In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w ...In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company’s quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integrated Manufacturing (CIM) tech nology. Gintic was responsible for the Planning & Scheduling functions through o ur APS tool kit, which is called Gintic Scheduling System (GSS). Our APS system is to be integrated with the other two key software systems, namely, the Enterpr ise Resource Planning (ERP) and Manufacturing Execution System (MES), with the C IM framework. The project was divided into four major execution phases. Phase One activities w ere focused on the gathering and analysis of the end users requirements in order to establish the ’As-Is’ situation and the wish list & the expectation of the ’To-Be’ system. Planning and Scheduling prototypes were built using GSS to iden tify the functionality gap between the existing GSS system and the ’To-Be’ mode l, in order to determine the customization effort needed. The project team perfo rmed detailed system analysis, design and development of the ’To-Be’ system dur ing Phase Two of the project. There are a total of four planning and scheduling modules, including Capacity Planning (CP), Daily Lot Release (DLR), Daily Produc tion Scheduling (DPS) and Dynamic Operation Scheduling (DOS). The detailed desig n specifications of each of the features and functionality were confirmed and ac cepted by the end users before the commencement of the development effort. The c ompleted and tested modules were delivered in stages for testing and acceptance by the end user during the Phase Three of the project. Pilot product line was se lected for live testing of the developed planning and scheduling modules, before they are proliferated to the rest of the product lines. System fine-tuning req uests were raised during the last phase of the project; the Planning & Schedulin g modules were fine-tuned to satisfy the end user requirements. This paper will conclude by highlighting the actual benefits achieved by the suc cessful deployment of the GSS system. The company has expressed their deep s atisfaction and has requested Gintic to look into the automation of the Plan ning and Scheduling functions in the Pre-Assembly and Test operations.展开更多
Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r ...Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".展开更多
针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设...针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设计和生产调度两个问题的区别与联系,搭建了多目标问题模型和解决框架。针对两阶段集成问题提出混合优化算法,对工艺阶段采用全局搜索算法,为集成系统提供多种工艺加工方案,保证集成算法的全局搜索性能;针对调度阶段设计一种改进禁忌搜索算法,通过交叉与随机抽样扩大解的分布范围,使用邻域禁忌搜索使得算法快速收敛,并采用Pareto非支配排序获得全局最优解。实验对比分析,验证了所提算法在求解多目标工艺规划与车间调度集成问题的高效性和稳定性。展开更多
针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合...针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。展开更多
综合能源系统(integrated energy system,IES)是实现“双碳”目标的重要载体,而经济、高效的多元资源协同配置是实现综合能源行业持续健康发展的前提。目前,IES配置模型多以成本最小为优化目标,而对投资回报率的考量较少,这可能导致成...综合能源系统(integrated energy system,IES)是实现“双碳”目标的重要载体,而经济、高效的多元资源协同配置是实现综合能源行业持续健康发展的前提。目前,IES配置模型多以成本最小为优化目标,而对投资回报率的考量较少,这可能导致成本回收期延长,进而降低资金周转效率并增加财务风险。有鉴于此,首先,提出IES容量价值函数,该函数以待配置资源容量为自变量,以系统运行成本降低量为因变量,实现多元资源容量价值的解析表达。然后,建立一种基于分式规划理论的多元资源协同配置模型,该模型以最大化投资收益率为目标,旨在构建具有最佳成本效益的配置策略。进一步地,通过变量替换技术将难以求解的分式规划问题线性化,并提出一种分解迭代算法,实现容量价值函数的外逼近与多元资源协同配置策略的高效求解。最后,通过仿真分析以及与成本最小法的对比,验证所提方法的有效性。展开更多
文摘In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company’s quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integrated Manufacturing (CIM) tech nology. Gintic was responsible for the Planning & Scheduling functions through o ur APS tool kit, which is called Gintic Scheduling System (GSS). Our APS system is to be integrated with the other two key software systems, namely, the Enterpr ise Resource Planning (ERP) and Manufacturing Execution System (MES), with the C IM framework. The project was divided into four major execution phases. Phase One activities w ere focused on the gathering and analysis of the end users requirements in order to establish the ’As-Is’ situation and the wish list & the expectation of the ’To-Be’ system. Planning and Scheduling prototypes were built using GSS to iden tify the functionality gap between the existing GSS system and the ’To-Be’ mode l, in order to determine the customization effort needed. The project team perfo rmed detailed system analysis, design and development of the ’To-Be’ system dur ing Phase Two of the project. There are a total of four planning and scheduling modules, including Capacity Planning (CP), Daily Lot Release (DLR), Daily Produc tion Scheduling (DPS) and Dynamic Operation Scheduling (DOS). The detailed desig n specifications of each of the features and functionality were confirmed and ac cepted by the end users before the commencement of the development effort. The c ompleted and tested modules were delivered in stages for testing and acceptance by the end user during the Phase Three of the project. Pilot product line was se lected for live testing of the developed planning and scheduling modules, before they are proliferated to the rest of the product lines. System fine-tuning req uests were raised during the last phase of the project; the Planning & Schedulin g modules were fine-tuned to satisfy the end user requirements. This paper will conclude by highlighting the actual benefits achieved by the suc cessful deployment of the GSS system. The company has expressed their deep s atisfaction and has requested Gintic to look into the automation of the Plan ning and Scheduling functions in the Pre-Assembly and Test operations.
文摘Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".
文摘针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设计和生产调度两个问题的区别与联系,搭建了多目标问题模型和解决框架。针对两阶段集成问题提出混合优化算法,对工艺阶段采用全局搜索算法,为集成系统提供多种工艺加工方案,保证集成算法的全局搜索性能;针对调度阶段设计一种改进禁忌搜索算法,通过交叉与随机抽样扩大解的分布范围,使用邻域禁忌搜索使得算法快速收敛,并采用Pareto非支配排序获得全局最优解。实验对比分析,验证了所提算法在求解多目标工艺规划与车间调度集成问题的高效性和稳定性。
文摘针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。
文摘综合能源系统(integrated energy system,IES)是实现“双碳”目标的重要载体,而经济、高效的多元资源协同配置是实现综合能源行业持续健康发展的前提。目前,IES配置模型多以成本最小为优化目标,而对投资回报率的考量较少,这可能导致成本回收期延长,进而降低资金周转效率并增加财务风险。有鉴于此,首先,提出IES容量价值函数,该函数以待配置资源容量为自变量,以系统运行成本降低量为因变量,实现多元资源容量价值的解析表达。然后,建立一种基于分式规划理论的多元资源协同配置模型,该模型以最大化投资收益率为目标,旨在构建具有最佳成本效益的配置策略。进一步地,通过变量替换技术将难以求解的分式规划问题线性化,并提出一种分解迭代算法,实现容量价值函数的外逼近与多元资源协同配置策略的高效求解。最后,通过仿真分析以及与成本最小法的对比,验证所提方法的有效性。