Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based o...In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.展开更多
This paper creates 3D solid model and assembly of U RJ 92-6 oil tank and analyses its strength by integrated CAD/CAE/CAM software I-D EAS. Through integrated simulation in computer, design efficiency and quality of oi...This paper creates 3D solid model and assembly of U RJ 92-6 oil tank and analyses its strength by integrated CAD/CAE/CAM software I-D EAS. Through integrated simulation in computer, design efficiency and quality of oil tank is greatly improved. Adopting integrated CAD/CAE/CAM software to carry out integrated research to equ ipment and products, we will be able to take overall analysis in aspects of 3-D solid modeling, pre-assembly and strength, etc., to realize non-paper designi ng and parallel designing. Problems can be found and settled during designing, w hich will increase designing efficiency and one-time success rate and realize o ptimum designing for products.展开更多
Die casting process is one of the prime options for m anufacturing precisely dimensioned, sharply defined metal parts. The design of d ie casting dies comprises several stages and entails a large amount of time. Tra d...Die casting process is one of the prime options for m anufacturing precisely dimensioned, sharply defined metal parts. The design of d ie casting dies comprises several stages and entails a large amount of time. Tra ditionally, the different stages of the die design were not integrated but exist as separate entities. Moreover, recurring modifications or even redesigns are r equired due to the complexity in achieving an accurate initial die design. As a result, die design is usually time-consuming and costly with respect to resourc es. The die casting industry will greatly benefit if proper application software are developed that integrates the different die design stages and allows editin g of die design as and when needed. Hence it is imperative to create an integrat ed die design system that shortens the die design time. This paper presents a research that establishes a prototype of an integrated die design system. It is developed using the commercial SolidWorks CAD system and n amed DiWorks. The aim of building the system on a commercial CAD system is to ut ilise the resources and features of the CAD system to speed up the die design pr ocess. DiWorks consists of six distinct modules: Project Manager, Cavity Insert Builder, Gating System Constructor, Die Base Designer, Ejector System Constructo r and Standard Components Library. Through these six modules, the die designer c an create a complete die casting die beginning from a product part model. It is a user-friendly system that allows both experienced and novice die designers to easily accomplish the task of die design. The practical goal of this research is twofold: to develop a system that integra tes the die design process and at the same time facilitates the editing of d ie design during or after the course of the design process. The research approac h includes (i) parametric design, (ii) feature-based design (iii) system modeli ng and implementation. Parametric design deals with variable dimensions as contr ol parameters, and it is an efficient tool for creating models based on paramete rs. Parametric design not only increases the design efficiency, but also makes t he updates and modifications of existing designs easier and faster, since these can be achieved by changing the parameters of the parametric model. Feature-bas ed design is used to design a product with features that are functionally define d by attributes and are geometrically represented by a set of parameters. The re sults of this research will aid the automation of the die design process, thus i mproving the efficiency and quality of, and reducing the cost of die design.展开更多
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel...In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.展开更多
A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the p...A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.展开更多
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.
文摘This paper creates 3D solid model and assembly of U RJ 92-6 oil tank and analyses its strength by integrated CAD/CAE/CAM software I-D EAS. Through integrated simulation in computer, design efficiency and quality of oil tank is greatly improved. Adopting integrated CAD/CAE/CAM software to carry out integrated research to equ ipment and products, we will be able to take overall analysis in aspects of 3-D solid modeling, pre-assembly and strength, etc., to realize non-paper designi ng and parallel designing. Problems can be found and settled during designing, w hich will increase designing efficiency and one-time success rate and realize o ptimum designing for products.
文摘Die casting process is one of the prime options for m anufacturing precisely dimensioned, sharply defined metal parts. The design of d ie casting dies comprises several stages and entails a large amount of time. Tra ditionally, the different stages of the die design were not integrated but exist as separate entities. Moreover, recurring modifications or even redesigns are r equired due to the complexity in achieving an accurate initial die design. As a result, die design is usually time-consuming and costly with respect to resourc es. The die casting industry will greatly benefit if proper application software are developed that integrates the different die design stages and allows editin g of die design as and when needed. Hence it is imperative to create an integrat ed die design system that shortens the die design time. This paper presents a research that establishes a prototype of an integrated die design system. It is developed using the commercial SolidWorks CAD system and n amed DiWorks. The aim of building the system on a commercial CAD system is to ut ilise the resources and features of the CAD system to speed up the die design pr ocess. DiWorks consists of six distinct modules: Project Manager, Cavity Insert Builder, Gating System Constructor, Die Base Designer, Ejector System Constructo r and Standard Components Library. Through these six modules, the die designer c an create a complete die casting die beginning from a product part model. It is a user-friendly system that allows both experienced and novice die designers to easily accomplish the task of die design. The practical goal of this research is twofold: to develop a system that integra tes the die design process and at the same time facilitates the editing of d ie design during or after the course of the design process. The research approac h includes (i) parametric design, (ii) feature-based design (iii) system modeli ng and implementation. Parametric design deals with variable dimensions as contr ol parameters, and it is an efficient tool for creating models based on paramete rs. Parametric design not only increases the design efficiency, but also makes t he updates and modifications of existing designs easier and faster, since these can be achieved by changing the parameters of the parametric model. Feature-bas ed design is used to design a product with features that are functionally define d by attributes and are geometrically represented by a set of parameters. The re sults of this research will aid the automation of the die design process, thus i mproving the efficiency and quality of, and reducing the cost of die design.
基金2024 Science and Technology Commissioner Service Group's Emergency Science and Technology Research Project for Wind Disaster Relief in Hainan Province(ZDYF2024YJGG002-8)China Huaneng Group Co.,Ltd.Headquarters Technology Project,Optimization of Photovoltaic Vegetable Greenhouse Structure and Research on Planting Agronomy in Tropical Regions(HNKJ22-HF77)。
文摘In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.
文摘A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.