We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on ...We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
The boundedness and the norm of a class of integral operators Ta,b,c on Lλ^P spaces are studied in this paper. The author not only gives the sufficient and necessary condition for the boundedness of Ta,b,c on Lλ^P,b...The boundedness and the norm of a class of integral operators Ta,b,c on Lλ^P spaces are studied in this paper. The author not only gives the sufficient and necessary condition for the boundedness of Ta,b,c on Lλ^P,but also obtains its accurate norm on Lλ^P for some range under the condition of c = n + a + b.展开更多
Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates o...Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.展开更多
In this article, the authors consider the weighted bounds for the singular integral operator defined by ■where ? is homogeneous of degree zero and has vanishing moment of order one, and A is a function on Rnsuch that...In this article, the authors consider the weighted bounds for the singular integral operator defined by ■where ? is homogeneous of degree zero and has vanishing moment of order one, and A is a function on Rnsuch that ?A ∈ BMO(R^n). By sparse domination, the authors obtain some quantitative weighted bounds for TAwhen ? satisfies regularity condition of Lr-Dini type for some r ∈(1, ∞).展开更多
Lp(Rn) (1<p<∞) boundedness and a weak type endpoint estimate are considered for the commutators of singular integral operators. A condition on the associated kernel is given under which the L2(Rn) boundedness o...Lp(Rn) (1<p<∞) boundedness and a weak type endpoint estimate are considered for the commutators of singular integral operators. A condition on the associated kernel is given under which the L2(Rn) boundedness of the singular integral operators implies the LP(Rn) boundedness (1<p<∞) and the weak type (H1(Rn), L1(Rn)) boundedness for the corresponding commutators. A new interpolation theorem is also established.展开更多
In this paper, we obtain the convexity of new general integral operator on some classes of k-uniformly p-valent a-convex functions of complex order. These results extend some known theorems.
Area integral functions are introduced for sectorial operators on L^p-spaces. We establish the equivalence between the square and area integral functions for sectorial operators on L^p spaces. This follows that the re...Area integral functions are introduced for sectorial operators on L^p-spaces. We establish the equivalence between the square and area integral functions for sectorial operators on L^p spaces. This follows that the results of Cowling, Doust, McIntosh, Yagi, and Le Merdy on H^∞ functional calculus of seetorial operators on LP-spaces hold true when the square functions are replaced by the area integral functions.展开更多
Bernardi has proved that if f(z) is starlike univalent in the unit disk △, then so is the func-tion g(z) given byIn this paper, we extend Bernardi's theorem to certain class φp (α,β,γ,ε,η; A) of p- valent s...Bernardi has proved that if f(z) is starlike univalent in the unit disk △, then so is the func-tion g(z) given byIn this paper, we extend Bernardi's theorem to certain class φp (α,β,γ,ε,η; A) of p- valent starlike functions for operators. We prove that if f(A) e φp (α, β,γ, ε, η; A), then g(A), defined byalso belongs to φp (α, β, γ, ε, η; A) and give a sufficient and necessary vondition with reference to f(A) 6 γp (α,β,γ,ε,η;A)展开更多
In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by s...In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by subordination. We obtain the inclusion relation, sufficient conditions and raajorization property of the class. Moreover, we point out some new and interesting corollaries of our main result. These results generalize some known results.展开更多
Let T_(a,φ)be a Fourier integral operator defined by the oscillatory integral T_(a,φ)u(x)=1/(2π)^(n)∫_(R^(n))^e^(iφ(x,ξ))a(x,ξ)(u)(ξ)dξ,where a∈S_(e,δ)^(m)andφ∈Φ^(2),satisfying the strong non-degenerate ...Let T_(a,φ)be a Fourier integral operator defined by the oscillatory integral T_(a,φ)u(x)=1/(2π)^(n)∫_(R^(n))^e^(iφ(x,ξ))a(x,ξ)(u)(ξ)dξ,where a∈S_(e,δ)^(m)andφ∈Φ^(2),satisfying the strong non-degenerate condition.It is shown that if0<(e)≤1,0≤δ<1 and m≤e^(2)-n/2,thenT_(α,φ)is a bounded operator from L^(∞()R^(n))to BMO(R^(n)).展开更多
In this paper, a kind of new definitions of singular integral operators in the weighted L-2 space with the generalized Jacobi weights are given, then the boundedness in the weighted L-2 space, the relationships betwee...In this paper, a kind of new definitions of singular integral operators in the weighted L-2 space with the generalized Jacobi weights are given, then the boundedness in the weighted L-2 space, the relationships between these operators and the classic singular integral operators are proved. For the convenience in the later use, similar results in the L-2 space with Jacobi weights are given.展开更多
In this article,the authors discuss a kind of modified singular integral equations on a disjoint union of closed contours or a disjoint union of open arcs.The authors introduce some singular integral operators associa...In this article,the authors discuss a kind of modified singular integral equations on a disjoint union of closed contours or a disjoint union of open arcs.The authors introduce some singular integral operators associated with this kind of singular integral equations,and obtain some useful properties for them.An operatorial approach is also given together with some illustrated examples.展开更多
Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's res...Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's results on H∞ functional calculus of sectorial operators on Hilbert spaces to the case when the square functions are replaced by the area integral functions.展开更多
This paper defines a class of singular integral operators (I) over tilde(wj) on L-wj(2) space, where wights w(j)(j = 1 - 4) are lour kinds of Chebyshev weights. The authors prove that (I) over tilde(wj) is an unique l...This paper defines a class of singular integral operators (I) over tilde(wj) on L-wj(2) space, where wights w(j)(j = 1 - 4) are lour kinds of Chebyshev weights. The authors prove that (I) over tilde(wj) is an unique linear extension of classic singular integral operator I-wj on Holder space, some important properties of (I) over tilde(wj) and some results of singular integral equation in L-wj(2) space.展开更多
We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for t...We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for these integral operators is also derived, and the results generalize some recently ones.展开更多
In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful p...In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful properties for them. These results improve both the classical theory of singular integral equation and the classical theory of singular quadrature.展开更多
In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^...In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities(GK202207018)of China。
文摘We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金Supported by the National Natural Science Foundation of China(1142610411271124+5 种基金1120114111301136and 61473332)Natural Science Foundation of Zhejiang province(LQ13A010005LY15A010014)Teachers Project of Huzhou University(RP21028)
文摘The boundedness and the norm of a class of integral operators Ta,b,c on Lλ^P spaces are studied in this paper. The author not only gives the sufficient and necessary condition for the boundedness of Ta,b,c on Lλ^P,but also obtains its accurate norm on Lλ^P for some range under the condition of c = n + a + b.
文摘Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.
基金supported by Teacher Research Capacity Promotion Program of Beijing Normal University ZhuhaiNNSF of China under Grant#11461065supported by the NNSF of China under grant#11871108
文摘In this article, the authors consider the weighted bounds for the singular integral operator defined by ■where ? is homogeneous of degree zero and has vanishing moment of order one, and A is a function on Rnsuch that ?A ∈ BMO(R^n). By sparse domination, the authors obtain some quantitative weighted bounds for TAwhen ? satisfies regularity condition of Lr-Dini type for some r ∈(1, ∞).
基金This research was supported by the NNSF of China (10271015)
文摘Lp(Rn) (1<p<∞) boundedness and a weak type endpoint estimate are considered for the commutators of singular integral operators. A condition on the associated kernel is given under which the L2(Rn) boundedness of the singular integral operators implies the LP(Rn) boundedness (1<p<∞) and the weak type (H1(Rn), L1(Rn)) boundedness for the corresponding commutators. A new interpolation theorem is also established.
基金Foundation item: Supported by the Natural Science Foundation of Inner Mongolia(2009MS0113) Sup- ported by the Higher School Research Foundation of Inner Mongolia(NJzy08150)
文摘In this paper, we obtain the convexity of new general integral operator on some classes of k-uniformly p-valent a-convex functions of complex order. These results extend some known theorems.
文摘Area integral functions are introduced for sectorial operators on L^p-spaces. We establish the equivalence between the square and area integral functions for sectorial operators on L^p spaces. This follows that the results of Cowling, Doust, McIntosh, Yagi, and Le Merdy on H^∞ functional calculus of seetorial operators on LP-spaces hold true when the square functions are replaced by the area integral functions.
文摘Bernardi has proved that if f(z) is starlike univalent in the unit disk △, then so is the func-tion g(z) given byIn this paper, we extend Bernardi's theorem to certain class φp (α,β,γ,ε,η; A) of p- valent starlike functions for operators. We prove that if f(A) e φp (α, β,γ, ε, η; A), then g(A), defined byalso belongs to φp (α, β, γ, ε, η; A) and give a sufficient and necessary vondition with reference to f(A) 6 γp (α,β,γ,ε,η;A)
基金Supported by the National Natural Science Foundation of China(11561001)Supported by the Natural Science Foundation of Inner Mongolia Province(2014MS0101)Supported by the Higher School Foundation of Inner Mongolia Province(2015NJZY240)
文摘In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by subordination. We obtain the inclusion relation, sufficient conditions and raajorization property of the class. Moreover, we point out some new and interesting corollaries of our main result. These results generalize some known results.
文摘Let T_(a,φ)be a Fourier integral operator defined by the oscillatory integral T_(a,φ)u(x)=1/(2π)^(n)∫_(R^(n))^e^(iφ(x,ξ))a(x,ξ)(u)(ξ)dξ,where a∈S_(e,δ)^(m)andφ∈Φ^(2),satisfying the strong non-degenerate condition.It is shown that if0<(e)≤1,0≤δ<1 and m≤e^(2)-n/2,thenT_(α,φ)is a bounded operator from L^(∞()R^(n))to BMO(R^(n)).
基金Supported by the Foundation of TY of China(10126028)
文摘In this paper, a kind of new definitions of singular integral operators in the weighted L-2 space with the generalized Jacobi weights are given, then the boundedness in the weighted L-2 space, the relationships between these operators and the classic singular integral operators are proved. For the convenience in the later use, similar results in the L-2 space with Jacobi weights are given.
基金NNSF of China(10471107)RFDP of Higher Education(20060486001)
文摘In this article,the authors discuss a kind of modified singular integral equations on a disjoint union of closed contours or a disjoint union of open arcs.The authors introduce some singular integral operators associated with this kind of singular integral equations,and obtain some useful properties for them.An operatorial approach is also given together with some illustrated examples.
文摘Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's results on H∞ functional calculus of sectorial operators on Hilbert spaces to the case when the square functions are replaced by the area integral functions.
文摘This paper defines a class of singular integral operators (I) over tilde(wj) on L-wj(2) space, where wights w(j)(j = 1 - 4) are lour kinds of Chebyshev weights. The authors prove that (I) over tilde(wj) is an unique linear extension of classic singular integral operator I-wj on Holder space, some important properties of (I) over tilde(wj) and some results of singular integral equation in L-wj(2) space.
文摘We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for these integral operators is also derived, and the results generalize some recently ones.
文摘In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful properties for them. These results improve both the classical theory of singular integral equation and the classical theory of singular quadrature.
文摘In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.