In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
本文使用自适应交叉近似算法(Adaptive Across Approximation)加速时域积分方程的求解,从而达到降低内存使用量和缩短计算时间的目的。众所周知,基于时间步进(Marching-On-in-Time)的时域积分方程的解会在时间轴后半部分出现明显的震荡...本文使用自适应交叉近似算法(Adaptive Across Approximation)加速时域积分方程的求解,从而达到降低内存使用量和缩短计算时间的目的。众所周知,基于时间步进(Marching-On-in-Time)的时域积分方程的解会在时间轴后半部分出现明显的震荡现象,造成解的不稳定。阶数步进(Marching-On-in-Degree)是解决这一问题的有效途径。因此,本文首先采用MOD方法求解时域积分方程,从而得到一个时间轴上稳定的解;其次,由于时域矩量法产生的大规模稠密矩阵,其求解势必对内存以及硬件资源有着较高的要求。ACA算法是一种纯数学加速方法,本文将它应用于时域积分方程的求解过程中,有效地降低了资源需求。最后,通过算例验证了本文方法的有效性和可行性。展开更多
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Supported by the National Natural Science Foundation of China (11071001)Anhui Provincial Natural Science Foundation (1208085MA13)+1 种基金the 211 Project of Anhui University (KJTD002B)the Key Project of Anhui Provincial Education Department (KJZ2009A2005Z)
文摘本文使用自适应交叉近似算法(Adaptive Across Approximation)加速时域积分方程的求解,从而达到降低内存使用量和缩短计算时间的目的。众所周知,基于时间步进(Marching-On-in-Time)的时域积分方程的解会在时间轴后半部分出现明显的震荡现象,造成解的不稳定。阶数步进(Marching-On-in-Degree)是解决这一问题的有效途径。因此,本文首先采用MOD方法求解时域积分方程,从而得到一个时间轴上稳定的解;其次,由于时域矩量法产生的大规模稠密矩阵,其求解势必对内存以及硬件资源有着较高的要求。ACA算法是一种纯数学加速方法,本文将它应用于时域积分方程的求解过程中,有效地降低了资源需求。最后,通过算例验证了本文方法的有效性和可行性。