Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz ba...Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.展开更多
Complex coupling problems have been existing in electromechanical systems. According to the principles of fractal geometry, an electromechanical system was to be resolved into some simple subsystems that can be easily...Complex coupling problems have been existing in electromechanical systems. According to the principles of fractal geometry, an electromechanical system was to be resolved into some simple subsystems that can be easily described and solved. Pattern recognition theory was applied to recognize the most probable solution space. Multipletarget decision method was used to synthesize the fractal solutions of a system. A kind of fractalconcurrentsynthetic design strategy, and some decoupling optimum techniques were suggested in the article.展开更多
Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and different...Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with...Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with neural networks, this paper presents a multivariable neural networkbased decoupling control algorithm. This control algorithm is integrated with distributed control technique and intelligent control technique, and a three-leveled intelligent decoupling control system consisting of basic control level, coordinating control level, and management and decision level is developed. The configuration and function of the control system are discussed in detail. This system has been successfully applied in ball mill pulverizing systems of 200MW power units, and remarkable benefits have been obtained.展开更多
In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six de...In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.展开更多
In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on th...In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.展开更多
Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet...Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.展开更多
When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of...When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.展开更多
A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the a...A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the application of kernel method in decoupling multivariable output feedback controllers. Simulation results are presented to show the feasibility of the proposed technique.展开更多
This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for ...This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme展开更多
文摘Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.
文摘Complex coupling problems have been existing in electromechanical systems. According to the principles of fractal geometry, an electromechanical system was to be resolved into some simple subsystems that can be easily described and solved. Pattern recognition theory was applied to recognize the most probable solution space. Multipletarget decision method was used to synthesize the fractal solutions of a system. A kind of fractalconcurrentsynthetic design strategy, and some decoupling optimum techniques were suggested in the article.
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province, China
文摘Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
基金Supported by National Basic Research Program of P.R.China (2002CB312201) and National High-Tech Research and Development Program of P.R.China (2004AA412030)
文摘Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with neural networks, this paper presents a multivariable neural networkbased decoupling control algorithm. This control algorithm is integrated with distributed control technique and intelligent control technique, and a three-leveled intelligent decoupling control system consisting of basic control level, coordinating control level, and management and decision level is developed. The configuration and function of the control system are discussed in detail. This system has been successfully applied in ball mill pulverizing systems of 200MW power units, and remarkable benefits have been obtained.
基金supported by the National Natural Science Foundation of China(61973175,61973172)。
文摘In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.
基金Projects(60634020, 61074117) supported by the National Natural Science Foundation of China
文摘In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.
基金Supported by National Natural Science Foundation of P. R. China (60404003)the Natural Science Foundation of Hunan Province (03JJY3108)Fok Ying-Tong Education Foundation (94028)
文摘Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.
文摘When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.
文摘A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the application of kernel method in decoupling multivariable output feedback controllers. Simulation results are presented to show the feasibility of the proposed technique.
文摘This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme