We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to cal...We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra.展开更多
This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely d...This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10904025 and 10674037)the National Basic Research and Development Program of China(Grant No.2007CB307001)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20092302120024)the Program for Excellent Team in Harbin Institute of Technology
文摘We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra.
基金Supported by the DST Research Project No.SR/SY/MS:521/08and CSIR,New Delhi
文摘This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.