As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international...Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.展开更多
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolv...We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.展开更多
Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a...Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.展开更多
Discrete Shannon entropy is applied to describe the information in a multiconfiguration Dirac Fock wavefunction. The dependence of Shannon entropy is shown as enlarging the configuration space and it can reach saturat...Discrete Shannon entropy is applied to describe the information in a multiconfiguration Dirac Fock wavefunction. The dependence of Shannon entropy is shown as enlarging the configuration space and it can reach saturation when there are enough configuration state wavefunctions to obtain the convergent energy levels; that is, the calculation procedure in multiconfiguration Dirae Fock method is an entropy saturation process. At the same accuracy level, the basis sets for the smallest entropy are best able to describe the energy state. Additionally, a connection between the sudden change of Shannon information entropies and energy level crossings along with isoelectronic sequence can be set up, which is helpful to find the energy level crossings of interest in interpreting and foreseeing the inversion scheme of energy levels for an x-ray laser.展开更多
We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photo- cathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacu...We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photo- cathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat clean- ing temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during prepa- ration. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 ~C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-si$u multi-information measurement system the NEA GaN photocathode can be successfully prepared.展开更多
We propose a novel measure to assess causality through the comparison of symbolic mutual information between the future of one random quantity and the past of the other.This provides a new perspective that is differen...We propose a novel measure to assess causality through the comparison of symbolic mutual information between the future of one random quantity and the past of the other.This provides a new perspective that is different from the conventional conceptions.Based on this point of view,a new causality index is derived that uses the definition of directional symbolic mutual information.This measure presents properties that are different from the time delayed mutual information since the symbolization captures the dynamic features of the analyzed time series.In addition to characterizing the direction and the amplitude of the information flow,it can also detect coupling delays.This method has the property of robustness,conceptual simplicity,and fast computational speed.展开更多
Many high quality studies have emerged from public databases,such as Surveillance,Epidemiology,and End Results(SEER),National Health and Nutrition Examination Survey(NHANES),The Cancer Genome Atlas(TCGA),and Medical I...Many high quality studies have emerged from public databases,such as Surveillance,Epidemiology,and End Results(SEER),National Health and Nutrition Examination Survey(NHANES),The Cancer Genome Atlas(TCGA),and Medical Information Mart for Intensive Care(MIMIC);however,these data are often characterized by a high degree of dimensional heterogeneity,timeliness,scarcity,irregularity,and other characteristics,resulting in the value of these data not being fully utilized.Data-mining technology has been a frontier field in medical research,as it demonstrates excellent performance in evaluating patient risks and assisting clinical decision-making in building disease-prediction models.Therefore,data mining has unique advantages in clinical big-data research,especially in large-scale medical public databases.This article introduced the main medical public database and described the steps,tasks,and models of data mining in simple language.Additionally,we described data-mining methods along with their practical applications.The goal of this work was to aid clinical researchers in gaining a clear and intuitive understanding of the application of data-mining technology on clinical big-data in order to promote the production of research results that are beneficial to doctors and patients.展开更多
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit stat...Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.展开更多
Pre-and post-selected(PPS) measurement, especially the weak PPS measurement, has been proved to be a useful tool for measuring extremely tiny physical parameters. However, it is difficult to retain both the attainable...Pre-and post-selected(PPS) measurement, especially the weak PPS measurement, has been proved to be a useful tool for measuring extremely tiny physical parameters. However, it is difficult to retain both the attainable highest measurement sensitivity and precision with the increase of the parameter to be measured. Here, a modulated PPS measurement scheme based on coupling-strength-dependent modulation is presented with the highest sensitivity and precision retained for an arbitrary coupling strength. This idea is demonstrated by comparing the modulated PPS measurement scheme with the standard PPS measurement scheme in the case of unbalanced input meter. By using the Fisher information metric, we derive the optimal pre-and post-selected states, as well as the optimal coupling-strength-dependent modulation without any restriction on the coupling strength. We also give the specific strategy of performing the modulated PPS measurement scheme, which may promote practical application of this scheme in precision metrology.展开更多
Unbalanced energy consumption distribution caused by the concentration of facilities and population topples the natural energy equilibrium of a city and causes environmental problems such as urban tropical night,heat ...Unbalanced energy consumption distribution caused by the concentration of facilities and population topples the natural energy equilibrium of a city and causes environmental problems such as urban tropical night,heat island phenomenon,global warming deterioration.Therefore,to secure eco-friendliness and sustainability of a city,it is necessary to introduce measures to alleviate the unequal distribution phenomenon of urban energy consumption from the city planning stage.For this purpose,the first step is to understand the current energy environment.The urban energy environment is affected by many factors in addition to gathering of buildings.Therefore,there is a limit to fully understanding advanced urban energy environment with only simple statistical urban information management technique.Research on methods of analyzing urban energy environment through simulation of recent urban scale is underway.There is not enough discussion about basic informaion databases for environmental analysis simulation of urban energy.This study presents a method using GIS(geographic information system) and web-based environmental information database as a way to improve the simulation accuracy.First,environmental information factors used for urban simulation were derived,and a web-based environmental information database targeting Daegu metropolitan city of Korea was built.Then,the urban energy environment was analyzed on a trial basis by linking the database with GIS.展开更多
The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal q...The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.展开更多
Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical pa...Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.展开更多
The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map show...The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map showing the seven most productive coauthors in this field. Based on these seven authors' work, five probable research directions about information seeking behavior are discerned and presented.展开更多
In taking into full consideration of the technology acceptance model(TAM),this empirical study has made a few assumptions and also has formulated a model for the study on the level of satisfaction of database users. T...In taking into full consideration of the technology acceptance model(TAM),this empirical study has made a few assumptions and also has formulated a model for the study on the level of satisfaction of database users. This research project was conducted by collecting relevant data from library users of five universities. Specifically, it aimed to measure database users' level of satisfaction and tried to find factors affecting these graduate students who are using databases regularly at their university libraries. An analysis of the collected data shows that the level of database users' satisfaction could be directly affected by the database service quality, the easiness of accessing the system and user perceived notion of usefulness of those databases that they use often. This study also found that database users' gender could be a significant factor in their perceived notion of easiness of accessing databases, and also in their perceived notion of satisfaction for their successful information retrieval operations. The frequency of accessing databases by these graduate students has an impact on users' perceived notion of easiness of database access. The users' school classifications could make a significant difference in their perceived notion on the extent of usefulness of a particular database.展开更多
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
文摘Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.
文摘We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
基金supported by the National Natural Science Foundation of China(No.52074123)the Natural Science Foundation of Hebei Province(Nos.E2022209143,E2021209148 and E2021209052).
文摘Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.
基金Supported by the National Natural Science Foundation of China under Grant No 11204243the Foundation of Northwest Normal University under Grant No NWNU-LKQN-10-7
文摘Discrete Shannon entropy is applied to describe the information in a multiconfiguration Dirac Fock wavefunction. The dependence of Shannon entropy is shown as enlarging the configuration space and it can reach saturation when there are enough configuration state wavefunctions to obtain the convergent energy levels; that is, the calculation procedure in multiconfiguration Dirae Fock method is an entropy saturation process. At the same accuracy level, the basis sets for the smallest entropy are best able to describe the energy state. Additionally, a connection between the sudden change of Shannon information entropies and energy level crossings along with isoelectronic sequence can be set up, which is helpful to find the energy level crossings of interest in interpreting and foreseeing the inversion scheme of energy levels for an x-ray laser.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871012)the Natural Science Foundation of Shandong Province,China (Grant No. ZR2011FQ027)
文摘We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photo- cathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat clean- ing temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during prepa- ration. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 ~C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-si$u multi-information measurement system the NEA GaN photocathode can be successfully prepared.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60904039)
文摘We propose a novel measure to assess causality through the comparison of symbolic mutual information between the future of one random quantity and the past of the other.This provides a new perspective that is different from the conventional conceptions.Based on this point of view,a new causality index is derived that uses the definition of directional symbolic mutual information.This measure presents properties that are different from the time delayed mutual information since the symbolization captures the dynamic features of the analyzed time series.In addition to characterizing the direction and the amplitude of the information flow,it can also detect coupling delays.This method has the property of robustness,conceptual simplicity,and fast computational speed.
基金the National Social Science Foundation of China(No.16BGL183).
文摘Many high quality studies have emerged from public databases,such as Surveillance,Epidemiology,and End Results(SEER),National Health and Nutrition Examination Survey(NHANES),The Cancer Genome Atlas(TCGA),and Medical Information Mart for Intensive Care(MIMIC);however,these data are often characterized by a high degree of dimensional heterogeneity,timeliness,scarcity,irregularity,and other characteristics,resulting in the value of these data not being fully utilized.Data-mining technology has been a frontier field in medical research,as it demonstrates excellent performance in evaluating patient risks and assisting clinical decision-making in building disease-prediction models.Therefore,data mining has unique advantages in clinical big-data research,especially in large-scale medical public databases.This article introduced the main medical public database and described the steps,tasks,and models of data mining in simple language.Additionally,we described data-mining methods along with their practical applications.The goal of this work was to aid clinical researchers in gaining a clear and intuitive understanding of the application of data-mining technology on clinical big-data in order to promote the production of research results that are beneficial to doctors and patients.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671087)
文摘Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.
基金supported by the National Natural Science Foundation of China(Grant Nos.11674234 and 11605205)the Fundamental Research Funds for the Central Universities,China(Grant No.2012017yjsy143)+4 种基金the National Key Research and Development Program of China(Grant No.2017YFA0305200)the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2015317)the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2015jcyjA00021 and cstc2018jcyjAX0656)the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees,China(Grant No.cx017134)the Fund of CAS Key Laboratory of Microscale Magnetic Resonance,China,and the Fund of CAS Key Laboratory of Quantum Information,China
文摘Pre-and post-selected(PPS) measurement, especially the weak PPS measurement, has been proved to be a useful tool for measuring extremely tiny physical parameters. However, it is difficult to retain both the attainable highest measurement sensitivity and precision with the increase of the parameter to be measured. Here, a modulated PPS measurement scheme based on coupling-strength-dependent modulation is presented with the highest sensitivity and precision retained for an arbitrary coupling strength. This idea is demonstrated by comparing the modulated PPS measurement scheme with the standard PPS measurement scheme in the case of unbalanced input meter. By using the Fisher information metric, we derive the optimal pre-and post-selected states, as well as the optimal coupling-strength-dependent modulation without any restriction on the coupling strength. We also give the specific strategy of performing the modulated PPS measurement scheme, which may promote practical application of this scheme in precision metrology.
基金Funded by the National Research Foundation of Korea from the Korea government (MEST) under grant No. NRF-2010-0029455
文摘Unbalanced energy consumption distribution caused by the concentration of facilities and population topples the natural energy equilibrium of a city and causes environmental problems such as urban tropical night,heat island phenomenon,global warming deterioration.Therefore,to secure eco-friendliness and sustainability of a city,it is necessary to introduce measures to alleviate the unequal distribution phenomenon of urban energy consumption from the city planning stage.For this purpose,the first step is to understand the current energy environment.The urban energy environment is affected by many factors in addition to gathering of buildings.Therefore,there is a limit to fully understanding advanced urban energy environment with only simple statistical urban information management technique.Research on methods of analyzing urban energy environment through simulation of recent urban scale is underway.There is not enough discussion about basic informaion databases for environmental analysis simulation of urban energy.This study presents a method using GIS(geographic information system) and web-based environmental information database as a way to improve the simulation accuracy.First,environmental information factors used for urban simulation were derived,and a web-based environmental information database targeting Daegu metropolitan city of Korea was built.Then,the urban energy environment was analyzed on a trial basis by linking the database with GIS.
基金supported by the National Natural Science Foundation of China(Grants No.11247294)the Research Foundation of Education Bureau of Hunan Province,China(Grant No.12C0826)+2 种基金the Doctor Foundation Startup from Hunan University of Arts and Science,China(Grant No.13101039)the Key Laboratory of Photoelectricity Information Integration and Optics Manufacture Technology in Hunan Province,Chinathe Construct Program of the Key Discipline in Hunan University of Arts and Science(Optics),China
文摘The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61765007 and 12265004)Jiangxi Provincial Natural Science Foundation,China (Grant No.20212ACB211004)Innovation Foundation of Jiangxi University of Science and Technology (Grant No.XY2021-S088)。
文摘Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.
文摘The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map showing the seven most productive coauthors in this field. Based on these seven authors' work, five probable research directions about information seeking behavior are discerned and presented.
基金supported by the Ministry of Education of China(Grant No.05JZD00024)
文摘In taking into full consideration of the technology acceptance model(TAM),this empirical study has made a few assumptions and also has formulated a model for the study on the level of satisfaction of database users. This research project was conducted by collecting relevant data from library users of five universities. Specifically, it aimed to measure database users' level of satisfaction and tried to find factors affecting these graduate students who are using databases regularly at their university libraries. An analysis of the collected data shows that the level of database users' satisfaction could be directly affected by the database service quality, the easiness of accessing the system and user perceived notion of usefulness of those databases that they use often. This study also found that database users' gender could be a significant factor in their perceived notion of easiness of accessing databases, and also in their perceived notion of satisfaction for their successful information retrieval operations. The frequency of accessing databases by these graduate students has an impact on users' perceived notion of easiness of database access. The users' school classifications could make a significant difference in their perceived notion on the extent of usefulness of a particular database.