Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HH...In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.展开更多
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste...An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.展开更多
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for ...The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.展开更多
In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observatio...In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observation equations are obtained for the information fusion algorithm. This approach avoids model error due to linearizing nonlinear observation equations in the conventional algorithm, so that the stability of information fusion algorithm is improved and computation expenses are reduced. Field running experiments show that satisfactory accuracy can be obtained by the proposed navigation model and algorithm for the non-gyroscope GPS/DR device.展开更多
Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor sys...Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.展开更多
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila...To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.展开更多
Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
The hypersonic target detection and recognition system is studied,on the basis of overall planning and design,a multi-agent system(MAS)structure and intelligent+information processing mechanism based on target detecti...The hypersonic target detection and recognition system is studied,on the basis of overall planning and design,a multi-agent system(MAS)structure and intelligent+information processing mechanism based on target detection and recognition are proposed,and the multi-agent operation process is analyzed and designed in detail.In the specific agents construction,the information fusion technology is introduced to defining the embedded agents and their interrelations in the system structure,and the intelligent processing ability of complex and uncertain problems is emphatically analyzed from the aspects of autonomy and collaboration.The aim is to optimize the information processing strategy of the hypersonic target detection and recognition system and improve the robustness and rapidity of the system.展开更多
Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accura...Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金supported by the National Defense Pre-research Foundation of China(51327030104)
文摘In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.
基金supported by the Aviation Science Foundation(20070852009)
文摘An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金This project was supported by the National Natural Science Foundation of China(70631004).
文摘The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.
文摘In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observation equations are obtained for the information fusion algorithm. This approach avoids model error due to linearizing nonlinear observation equations in the conventional algorithm, so that the stability of information fusion algorithm is improved and computation expenses are reduced. Field running experiments show that satisfactory accuracy can be obtained by the proposed navigation model and algorithm for the non-gyroscope GPS/DR device.
文摘Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.
文摘To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
基金This work was supported by the National Natural Science Foundation of China(61471391).
文摘The hypersonic target detection and recognition system is studied,on the basis of overall planning and design,a multi-agent system(MAS)structure and intelligent+information processing mechanism based on target detection and recognition are proposed,and the multi-agent operation process is analyzed and designed in detail.In the specific agents construction,the information fusion technology is introduced to defining the embedded agents and their interrelations in the system structure,and the intelligent processing ability of complex and uncertain problems is emphatically analyzed from the aspects of autonomy and collaboration.The aim is to optimize the information processing strategy of the hypersonic target detection and recognition system and improve the robustness and rapidity of the system.
基金Supported by the Special Funds for Major State Basic Research Program of P.R.China(2001CB309403)
文摘Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.