The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson corr...A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.展开更多
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.
基金Projects(61374140,61673173)supported by the National Natural Science Foundation of ChinaProjects(222201717006,222201714031)supported by the Fundamental Research Funds for the Central Universities,China
文摘A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.