A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted faul...A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted fault propagation graph.Different from other RCA methods,it mines effective features information related to root causes from offline alarms.Combined with the information,online alarms and graph relationship of network structure are used to construct a weighted graph.Thus,this approach does not require operational experience and can be widely applied in different distributed networks.The proposed method can be used in multiple fault location cases.The experiment results show the proposed approach achieves much better performance with 6%higher precision at least for root fault location,compared with three baseline methods.Besides,we explain how the optimal parameter’s value in the random walk algorithm influences RCA results.展开更多
Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, ...Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, we present various smart grid applications running on such intelligent secondary substations(iSSN) including their interaction with each other. We integrate energy consumption and production data, as well as forecasts, sensed from the smart buildings’ energy management systems(BEMSs) into the operation of the low voltage grid. A suitable framework for those modular applications includes features to initiate their installation, update, removal, the remote operator site, and not requiring staff on-site for such typical reappearing maintenance tasks.展开更多
We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pu...We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting.We also study the influence of some parameters fluctuation,atomic spontaneous emission,and photon leakage on fidelity.The results show that our schemes have good robustness.Because the atoms are trapped in different cavities,it is easy to perform different operations on different atoms.The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.展开更多
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20201120009。
文摘A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted fault propagation graph.Different from other RCA methods,it mines effective features information related to root causes from offline alarms.Combined with the information,online alarms and graph relationship of network structure are used to construct a weighted graph.Thus,this approach does not require operational experience and can be widely applied in different distributed networks.The proposed method can be used in multiple fault location cases.The experiment results show the proposed approach achieves much better performance with 6%higher precision at least for root fault location,compared with three baseline methods.Besides,we explain how the optimal parameter’s value in the random walk algorithm influences RCA results.
基金supported by the Austrian Ministry for Transport,Innovation and Technology(BMVIT)the Austrian Research Promotion Agency(FFG)under Grant No.849902the Austrian Climate and Energy Fund(KLIEN)under Grant No.846141
文摘Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, we present various smart grid applications running on such intelligent secondary substations(iSSN) including their interaction with each other. We integrate energy consumption and production data, as well as forecasts, sensed from the smart buildings’ energy management systems(BEMSs) into the operation of the low voltage grid. A suitable framework for those modular applications includes features to initiate their installation, update, removal, the remote operator site, and not requiring staff on-site for such typical reappearing maintenance tasks.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804308).
文摘We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting.We also study the influence of some parameters fluctuation,atomic spontaneous emission,and photon leakage on fidelity.The results show that our schemes have good robustness.Because the atoms are trapped in different cavities,it is easy to perform different operations on different atoms.The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.