Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and...Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.展开更多
Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this pape...Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.展开更多
基金supported by the National High Technology Research and Development Program(863)of China(No.2015AA016101)the National Natural Science Fund(No.61300184)Beijing Nova Program(No.Z151100000315078)
文摘Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM009the National Natural Science Foundation of China(NSFC) under Grant 61602030 U1404611,61301081+1 种基金the Project Funded by China Postdoctoral Science Foundation under Grant No.2016T90031,2015M570028 and 2015M580970the Program for Science & Technology Innovation Talents in the University of Henan Province under Grant No.16HASTIT035
文摘Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.