期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
An improved computation scheme of strapdown inertial navigation system using rotation technique 被引量:8
1
作者 张伦东 练军想 +1 位作者 吴美平 胡小平 《Journal of Central South University》 SCIE EI CAS 2012年第5期1258-1266,共9页
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a... To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles. 展开更多
关键词 strapdown inertial navigation system rotation technique navigation computation scheme error characteristic
在线阅读 下载PDF
Suppression of the G-sensitive drift of laser gyro in dual-axis rotational inertial navigation system 被引量:3
2
作者 YU Xudong WANG Zichao +2 位作者 FAN Huiying WEI Guo WANG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期822-830,共9页
The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca... The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system. 展开更多
关键词 inertial navigation rotational inertial navigation system(INS) laser gyro G-sensitive drift
在线阅读 下载PDF
Vision-aided inertial navigation for low altitude aircraft with a downward-viewing camera
3
作者 ZHOU Ruihu TONG Mengqi GAO Yongxin 《Journal of Systems Engineering and Electronics》 2025年第3期825-834,共10页
Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small... Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS. 展开更多
关键词 visual inertial odometry(VIO) strapdown inertial navigation system(SINS) multi-state constraint Kalman filter(MSCKF)
在线阅读 下载PDF
IAE-adaptive Kalman filter for INS/GPS integrated navigation system 被引量:15
4
作者 Bian Hongwei Jin Zhihua Tian Weifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期502-508,共7页
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal... A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter. 展开更多
关键词 inertial navigation system global positioning system integrated navigation system adaptive Kalman filter
在线阅读 下载PDF
Accuracy improvement of GPS/MEMS-INS integrated navigation system during GPS signal outage for land vehicle navigation 被引量:15
5
作者 Honglei Qin Li Cong Xingli Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期256-264,共9页
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff... To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods. 展开更多
关键词 functional coefficient autoregressive (FAR) global po- sitioning system (GPS) micro electromechanical system (MEMS) inertial navigation system (INS) self-constructive adaptive neuro- fuzzy inference system (SCANFIS).
在线阅读 下载PDF
Transfer alignment of shipborne inertial-guided weapon systems 被引量:4
6
作者 Sun Changyue Deng Zhenglong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期348-353,共6页
The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed.... The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms. 展开更多
关键词 transfer alignment inertial navigation system Kalman filtering ship flexure
在线阅读 下载PDF
Free-walking:Pedestrian inertial navigation based on dual foot-mounted IMU 被引量:2
7
作者 Qu Wang Meixia Fu +6 位作者 Jianquan Wang Lei Sun Rong Huang Xianda Li Zhuqing Jiang Yan Huang Changhui Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期573-587,共15页
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor... The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance. 展开更多
关键词 Indoor positioning inertial navigation system(INS) Zero-velocity update(ZUPT) Internet of things(IoTs) Location-based service(LBS)
在线阅读 下载PDF
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
8
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
在线阅读 下载PDF
SINS/CNS/GPS integrated navigation algorithm based on UKF 被引量:27
9
作者 Haidong Hu Xianlin Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期102-109,共8页
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl... A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter federated Kalman filter strapdown inertial navigation system celestial navigation system global psitioning system.
在线阅读 下载PDF
New rapid transfer alignment method for SINS of airborne weapon systems 被引量:9
10
作者 Yu Chen Yan Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期281-287,共7页
Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment ... Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment use nonlinear transfer align- ment models and incorporate nonlinear filtering. A rapid transfer alignment method with linear models and linear filtering for ar- bitrary misalignment angles is presented. Through the attitude quaternion decomposition, the purpose of transfer alignment is converted to estimate a constant quaternion. Employing special manipulations on measurement equation, velocity and attitude linear measurement equations are derived. Then the linear trans- fer alignment model for arbitrary misalignment angles is built. An adaptive Kalman filter is developed to handle modeling errors of the measurement noise statistics. Simulation results show feasibili- ty and effectiveness of the proposed method, which provides an alternative rapid transfer alignment method for airborne weapons. 展开更多
关键词 strapdown inertial navigation system (SINS) transferalignment Kalman filter quaternion.
在线阅读 下载PDF
Point mass filter based matching algorithm in gravity aided underwater navigation 被引量:10
11
作者 HAN Yurong WANG Bo +1 位作者 DENG Zhihong FU Mengyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期152-159,共8页
Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital mo... Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests. 展开更多
关键词 gravity-aided inertial navigation system(INS) navigation point mass filter(PMF) deterministic resampling
在线阅读 下载PDF
Time-asynchrony identification between inertial sensors in SIMU 被引量:2
12
作者 Gongmin Yan Xi Sun +2 位作者 Jun Weng Qi Zhou Yongyuan Qin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期346-352,共7页
Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-async... Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification. 展开更多
关键词 strapdown inertial navigation system(SINS) time-asynchrony pseudo-coning error velocity error
在线阅读 下载PDF
Hybrid Kalman and unscented Kalman filters for INS/GPS integrated system considering constant lever arm effect 被引量:1
13
作者 常国宾 柳明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期575-583,共9页
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff... In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated. 展开更多
关键词 inertial navigation system global positioning system(GPS) integrated system lever arm effect Kalman filter unscented Kalman filter
在线阅读 下载PDF
Homologous fault monitoring technology of redundant INS in airborne avionics systems 被引量:4
14
作者 Xiuzhi Wu Jizhou Lai +1 位作者 Min Liu Pin Lv 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1038-1044,共7页
Redundant technology plays an important role in improving the reliability and fault-tolerance of the airborne avionics systems. A Markov state transition model is introduced to the reliability analysis of the redundan... Redundant technology plays an important role in improving the reliability and fault-tolerance of the airborne avionics systems. A Markov state transition model is introduced to the reliability analysis of the redundant inertial navigation system (RINS) in airborne navigation systems. An information processing mechanism based on difference filtering is put forward to strengthen the consistency between the outputs of the equal-precision inertial navigation system (INS). On this basis, the homologous fault monitoring algorithm is designed to realize the homologous fault monitoring of RINS. The simulation is carried out based on the above algorithms, and the results verify the effectiveness of the proposed fault monitoring algorithm based on difference filtering. Research results have good reference value for the configuration and design of RINS in airborne integrated avionics systems. 展开更多
关键词 inertial navigation redundant configuration difference filtering homologous fault monitoring
在线阅读 下载PDF
Method of improving pedestrian navigation performance based on chest card
15
作者 CHENG Hao GAO Shuang +2 位作者 CAI Xiaowen WANG Yuxuan WANG Jie 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期987-998,共12页
With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.T... With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy. 展开更多
关键词 pedestrian navigation micro-electro-mechanical sy-stem(MEMS) inertial navigation complementary filtering
在线阅读 下载PDF
Rapid transfer alignment for SINS of carrier craft 被引量:6
16
作者 Jingshuo Xu Yongjun Wang Zhicai Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期303-308,共6页
In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In th... In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s. 展开更多
关键词 strapdown inertial navigation system(SINS) transfer alignment carrier aircraft CARRIER moored.
在线阅读 下载PDF
Fast fine acquisition algorithm of GPS receiver aided by INS information 被引量:6
17
作者 Lufeng Zhu Chunxi Zhang Zhiqiang Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期300-305,共6页
Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial nav... Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial navigation system (INS) information and almanac data and reducing the searching area. The traditional fast acquisition is analyzed, the fast acquisition of the GPS receiver aided is presented by INS information, and the signal is fine captured by spectrum zooming. Then the algorithm is simulated by sampled GPS intermediate frequency (IF) signal and the result verifies that this acquisition can dramatically improve the capability of GPS receiver and reduce its acquisition time. 展开更多
关键词 inertial navigation system (INS) aid spectrum zooming acquisition time global position system (GPS) receiver.
在线阅读 下载PDF
Optimal two-iteration sculling compensation mathematical framework for SINS velocity updating 被引量:4
18
作者 Tong Zhang Kang Chen +2 位作者 Wenxing Fu Yunfeng Yu Jie Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1065-1071,共7页
A new two-iteration sculling compensation mathematical framework is provided for modern-day strapdown inertial navigation system(SINS) algorithm design that utilizes a new concept in velocity updating. The principal... A new two-iteration sculling compensation mathematical framework is provided for modern-day strapdown inertial navigation system(SINS) algorithm design that utilizes a new concept in velocity updating. The principal structure of this framework includes twice sculling compensation procedure using incremental outputs from the inertial system sensors during the velocity updating interval. Then, the moderate algorithm is designed to update the velocity parameter. The analysis is conducted in the condition of sculling motion which indicates that the new mathematical framework error which is smaller than the conventional ones by at least two orders is far superior. Therefore, a summary is given for SINS software which can be designed with the new mathematical framework in velocity updating. 展开更多
关键词 strapdown inertial navigation system(SINS) two-iteration velocity updating sculling optimized coefficients
在线阅读 下载PDF
Self-alignment of full skewed RSINS: observability analysis and full-observable Kalman filter 被引量:3
19
作者 Lailiang Song Chunxi Zhang Jiazhen Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期104-114,共11页
Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot ... Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened. 展开更多
关键词 global perspective redundant strapdown inertial navigation system (RSINS) SELF-ALIGNMENT observability analysis Kalman filter.
在线阅读 下载PDF
Robust fault detection filter and its application in MEMS-based INS/GPS 被引量:2
20
作者 Jing Shi Lingjuan Miao Maolin Ni 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期113-119,共7页
Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this pa... Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this paper proposes a robust fault-detection filter for linear discrete time-varying systems.The algorithm uses H∞ estimator to minimize the worst possible amplification from disturbances to estimate errors,and H_ index to maximize the minimum effect of faults on the residual output of the filter.This approach is applied to the MEMS-based INS/GPS.And simulation results show that the new algorithm can reduce the effect of unknown disturbances and has a high sensitivity to faults. 展开更多
关键词 integrated navigation inertial navigation system(INS) micro electro mechanical system(MEMS) fault detection robustness.
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部