期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Variance-based fingerprint distance adjustment algorithm for indoor localization 被引量:7
1
作者 Xiaolong Xu Yu Tang +1 位作者 Xinheng Wang Yun Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1191-1201,共11页
The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R... The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs. 展开更多
关键词 indoor localization fingerprint localization receivedsignal strength indication (RSSI) variance fingerprint distance.
在线阅读 下载PDF
Hybrid ToA and IMU indoor localization system by various algorithms 被引量:4
2
作者 CHEN Xue-chen CHU Sheng +1 位作者 LI Fan CHU Guang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2281-2294,共14页
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele... In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line. 展开更多
关键词 indoor localization time of arrival (ToA) inertial measurement unit (IMU) Bayesian filter extended Kalman filter MAP algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部