The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor d...The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.展开更多
无人机由于其灵活部署、广泛覆盖和高移动性等特点在6G无线通信网络发展中至关重要,同时也为信道研究带来了挑战。提出了一种适用于6G无人机通信网络的多输入多输出(Multiple-Input Multiple-Output,MIMO)空地无线通信场景的信道模型。...无人机由于其灵活部署、广泛覆盖和高移动性等特点在6G无线通信网络发展中至关重要,同时也为信道研究带来了挑战。提出了一种适用于6G无人机通信网络的多输入多输出(Multiple-Input Multiple-Output,MIMO)空地无线通信场景的信道模型。实际场景中无人机发射机与地面移动用户接收机之间的直接传播链路经常被树木和建筑物阻断,为了解决这一问题,通过引入双智能反射表面(Intelligent Reflecting Surfaces,IRS)技术来实现信号传输,形成双IRS、单IRS以及非视距(Non Line of Sight,NLOS)路径的传播链路。研究了这些链路的复杂信道冲激响应,考虑了多径效应的影响并据此推导出了完整的信道矩阵,分析了该信道模型在不同模型参数下的统计特性。基于这些理论推导,进一步研究了双IRS辅助空对地通信信道模型的传播特性。仿真结果表明,相较于单IRS配置,双IRS在提升系统性能方面具有显著优势,为进一步优化和设计基于IRS的空对地无线通信系统提供了有价值的参考。展开更多
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Major Science and Technology Project in Sichuan Province(No.19ZDZD0137)the Sichuan Science and Technology Program(No.2020YFG0019).
文摘The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.
文摘无人机由于其灵活部署、广泛覆盖和高移动性等特点在6G无线通信网络发展中至关重要,同时也为信道研究带来了挑战。提出了一种适用于6G无人机通信网络的多输入多输出(Multiple-Input Multiple-Output,MIMO)空地无线通信场景的信道模型。实际场景中无人机发射机与地面移动用户接收机之间的直接传播链路经常被树木和建筑物阻断,为了解决这一问题,通过引入双智能反射表面(Intelligent Reflecting Surfaces,IRS)技术来实现信号传输,形成双IRS、单IRS以及非视距(Non Line of Sight,NLOS)路径的传播链路。研究了这些链路的复杂信道冲激响应,考虑了多径效应的影响并据此推导出了完整的信道矩阵,分析了该信道模型在不同模型参数下的统计特性。基于这些理论推导,进一步研究了双IRS辅助空对地通信信道模型的传播特性。仿真结果表明,相较于单IRS配置,双IRS在提升系统性能方面具有显著优势,为进一步优化和设计基于IRS的空对地无线通信系统提供了有价值的参考。