期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
1
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(DT-CWT)
在线阅读 下载PDF
Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain 被引量:1
2
作者 Hong Fan Yiman Sun +3 位作者 Xiaojuan Zhang Chengcheng Zhang Xiangjun Li Yi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期655-667,共13页
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand... To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation. 展开更多
关键词 undecimated dual-tree complex wavelet MR image segmentation multi-resolution Markov random field model
在线阅读 下载PDF
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
3
作者 Gensheng Hu Min Li +2 位作者 Dong Liang Mingzhu Wan Wenxia Bao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期592-603,共12页
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac... A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms. 展开更多
关键词 video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT) Cayley-Klein metric learning
在线阅读 下载PDF
机器人锅炉冷态空气动力场测量系统开发 被引量:1
4
作者 寇梦楠 刘海玉 +2 位作者 牛俊天 金燕 吴杨 《动力工程学报》 CAS CSCD 北大核心 2024年第2期284-291,300,共9页
针对锅炉冷态空气动力场试验自动化程度低、操作危险性大的问题,开发了机器人锅炉冷态空气动力场试验测量系统。系统下位机采用STM32芯片作为主控芯片,控制爬壁机器人的运动以及与上位机的信息交换,同时引入混沌线性惯性权重对粒子群优... 针对锅炉冷态空气动力场试验自动化程度低、操作危险性大的问题,开发了机器人锅炉冷态空气动力场试验测量系统。系统下位机采用STM32芯片作为主控芯片,控制爬壁机器人的运动以及与上位机的信息交换,同时引入混沌线性惯性权重对粒子群优化模糊PID算法进行优化,并将改进后的算法作为机器人运动路径的控制策略,对于机械臂的控制引入D-H法。上位机为LabVIEW搭建的操作平台,通过嵌入双树复小波变换去噪算法,对采集到的风速信号进行降噪处理。结果表明:所提出的系统各个模块均可正常且稳定运行,与人工测试的误差保持在±10%,能够满足锅炉冷态试验的要求。 展开更多
关键词 锅炉 机器人 STM32 LabVIEW 改进粒子群优化模糊PID D-H法 双树复小波变换
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
5
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
6
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (DT-CWT ) singular value decomposition (SVD)
在线阅读 下载PDF
变压器局部放电信号检测与类型识别 被引量:3
7
作者 赵建利 刘海峰 +3 位作者 刘婷 岳国良 孙祎 付龙明 《现代电子技术》 北大核心 2016年第6期166-170,共5页
为实现变压器局部放电信号检测和类型识别,设计基于超高频(UHF)法的变压器局部放电检测系统,针对4种典型的变压器放电模型进行了局部放电实验,获得相应的局部放电包络信号数据,并通过以太网通信将数据上传至电脑。利用提升双树复小波变... 为实现变压器局部放电信号检测和类型识别,设计基于超高频(UHF)法的变压器局部放电检测系统,针对4种典型的变压器放电模型进行了局部放电实验,获得相应的局部放电包络信号数据,并通过以太网通信将数据上传至电脑。利用提升双树复小波变换对包络信号数据进行消噪,从消噪后的信号不难看出,同一放电模型的局部放电包络信号形状大致相同,不同放电模型存在差别。提取6种包络信号的特征参数,结合外部加载电压,采用BP神经网络对变压器局部放电类型进行识别,当训练误差δ=0.02时,变压器放电类型识别平均正确率在98%以上。 展开更多
关键词 变压器局部放电 超高频法 提升双树复小波 BP神经网络
在线阅读 下载PDF
基于判别改进局部切空间排列特征融合的人脸识别方法 被引量:7
8
作者 张强 戚春 蔡云泽 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2396-2401,共6页
改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA... 改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA能够同时保持类内与类间局部判别几何结构。此外,提出一种增强型Gabor-like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor-like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale和PIE人脸数据库上的实验结果证明了所提方法的有效性。 展开更多
关键词 人脸识别 流形学习 线性逼近 判别改进局部切空间排列 增强型Gabor—like复数小波变换 特征融合
在线阅读 下载PDF
基于偶树复小波和改进型阈值函数的降噪方法及其应用 被引量:4
9
作者 邱爱中 《噪声与振动控制》 CSCD 2012年第2期115-118,共4页
为更好地保留原有用信号信息,有效恢复强噪声背景下微弱故障信号,提出了一种基于对偶树复小波和改进型阈值函数的降噪方法,将其应用于机械故障诊断,取得了较好效果。运用对偶树复小波变换滤波器设计方法和改进型阈值函数,以实施降噪的... 为更好地保留原有用信号信息,有效恢复强噪声背景下微弱故障信号,提出了一种基于对偶树复小波和改进型阈值函数的降噪方法,将其应用于机械故障诊断,取得了较好效果。运用对偶树复小波变换滤波器设计方法和改进型阈值函数,以实施降噪的具体步骤。该法充分利用了对偶树复小波变换的平移不变的优良特性,同时,改进型阈值函数与传统软、硬阈值降噪算法相比,克服了软阈值信号失真和硬阈值信号不连续、振荡等缺点。实验表明:此法有效去除了噪声,是一种较好的提取微弱故障信号的方法。 展开更多
关键词 振动与波 对偶树复小波 改进型阈值函数 故障诊断 弱信号提取
在线阅读 下载PDF
双树复小波变换域矿区遥感图像自适应滤波 被引量:3
10
作者 张丽娟 《金属矿山》 CAS 北大核心 2015年第11期113-118,共6页
矿区遥感图像因受成像环境、成像器件固有缺陷等因素的影响容易出现不同程度的失真,为此,结合双树复小波变换(Dual-tree complex wavelet transform,DTCWT)多尺度图像分析的优良特性,提出了一种矿区遥感图像自适应滤波算法。首先对获取... 矿区遥感图像因受成像环境、成像器件固有缺陷等因素的影响容易出现不同程度的失真,为此,结合双树复小波变换(Dual-tree complex wavelet transform,DTCWT)多尺度图像分析的优良特性,提出了一种矿区遥感图像自适应滤波算法。首先对获取的视觉效果不佳的遥感图像进行直方图均衡化处理,使得增强后的图像灰度分布较为合理,提高图像的对比度;然后对增强后的图像进行双树复小波变换,对获得的高频分解系数采用改进的多级中值滤波算法进行处理;最后,将低频分解系数与滤波后的高频分解系数进行逆双树复小波变换。其中改进的多级中值滤波算法相对于经典多级中值滤波算法进行了2点改进:1将原有的4个方向滤波窗口扩展为7个,更有利于保持图像中信息的多方向特性;2对新增设的3个滤波窗口分别进行加权中值滤波,将上述7个滤波窗口的滤波值采用一种基于图像灰度值相关性的判别方法进行处理,剔除与待滤波像素点相关性不强的滤波值,将剩余的滤波值计算均值输出;MATLAB平台试验结果表明:新算法的总体性能相对于经典多级中值滤波、中值滤波、双边滤波等算法而言,优势较为明显。 展开更多
关键词 矿区遥感图像 双树复小波变换 直方图均衡化 多级中值滤波算法 改进多级中值滤波算法
在线阅读 下载PDF
基于双树FB结构复小波和改进RBF网络的配电网单相接地故障选线方法
11
作者 崔楠楠 江夏进 《煤矿机电》 2014年第6期52-56,60,共6页
在引用双树FB结构复小波的奇异性检测理论和模极大值理论的基础上,提出了改进传统RBF神经网络的优化方法。即将Chaari复小波变换理论与RBF神经网络技术结合,进而实现了基于两者结合的综合选线方法。利用复小波变换提取发生故障后各支路... 在引用双树FB结构复小波的奇异性检测理论和模极大值理论的基础上,提出了改进传统RBF神经网络的优化方法。即将Chaari复小波变换理论与RBF神经网络技术结合,进而实现了基于两者结合的综合选线方法。利用复小波变换提取发生故障后各支路零序电流的暂态信号特征,将其作为改进RBF神经网络的输入向量,再利用RBF神经网络强大的自适应、自学习能力,对特征量进行训练,确保其快速的收敛性以及选线的准确性。仿真实验结果,表明该方法能准确进行单相故障选线。 展开更多
关键词 双树FB结构复小波 配电网 单相接地故障 改进RBF网络 故障选线
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部