期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种电能质量扰动监测与识别新方法 被引量:22
1
作者 曹健 林涛 +1 位作者 徐遐龄 刘林 《中国电机工程学报》 EI CSCD 北大核心 2011年第31期125-133,共9页
为了能够为各类电能扰动事件的本质研究和有效治理提供准确、可靠的依据,提出基于时频原子变换(timefrequency transform,TFT)和改进型自组织映射神经网络(improved self-organizing map,ISOM)的电能质量扰动在线监测与识别新方法。TFT... 为了能够为各类电能扰动事件的本质研究和有效治理提供准确、可靠的依据,提出基于时频原子变换(timefrequency transform,TFT)和改进型自组织映射神经网络(improved self-organizing map,ISOM)的电能质量扰动在线监测与识别新方法。TFT具有自适应复带通滤波特性,其频窗中心与频窗半径解耦及频窗宽度不受中心频率的约束,可以灵活调整。通过设置恰当的频域窗口,TFT可有效抑制邻近频率分量的相互干扰,且有较好的动态响应速度。TFT能准确监测电力系统波形中电能质量事件,并为类型识别提供物理意义明确、指标具体的实时模式特征。依据TFT提取的特征向量,ISOM可准确识别单一或同时存在的多重电能质量事件,并对其严重程度进行直观表达,能动态反映电能质量事件各自的发展变化轨迹。仿真验证结果表明了所提出方法的有效性和优越性。 展开更多
关键词 电能质量 时频原子变换 模式识别 改进型自组织映射神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部