期刊文献+
共找到642篇文章
< 1 2 33 >
每页显示 20 50 100
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
1
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
2
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
在线阅读 下载PDF
融合多维时间序列分析的IQPSO-GRU综采工作面瓦斯浓度软测量模型
3
作者 付华 刘雨竹 +1 位作者 徐楠 张俊男 《传感技术学报》 北大核心 2025年第5期877-885,共9页
为快速、准确预测煤矿综采工作面瓦斯浓度,建立基于多维时间序列(MTS)分析的改进量子粒子群算法(IQPSO)优化门控循环单元网络(GRU)的综采工作面瓦斯浓度软测量模型。首先利用拉索(Lasso)算法对煤矿监测系统采集到的MTS数据进行特征提取... 为快速、准确预测煤矿综采工作面瓦斯浓度,建立基于多维时间序列(MTS)分析的改进量子粒子群算法(IQPSO)优化门控循环单元网络(GRU)的综采工作面瓦斯浓度软测量模型。首先利用拉索(Lasso)算法对煤矿监测系统采集到的MTS数据进行特征提取,得出影响瓦斯浓度演化趋势的主要因素作为模型输入量;其次在GRU网络单元中引入ReLU激活函数及Dropout丢弃层解决模型训练梯度问题并增强其泛化能力;提出IQPSO优化GRU网络超参数,提升模型预测准确率及运算效率,得到参数最优的瓦斯浓度软测量模型;最后将所提出的软测量模型与GRU、LSTM、决策树模型进行对比分析,结果表明:所建模型的相对均方根误差值可缩小至0.1021,平均绝对百分比误差可缩小至0.892,而拟合优度决定系数可优化至0.9881,说明其预测结果拟合度更佳、测量性能更优。 展开更多
关键词 瓦斯浓度 软测量 Lasso特征提取 改进的量子粒子群算法 门控循环单元网络
在线阅读 下载PDF
基于IQPSO-EKF的多传感器融合姿态测量方法研究 被引量:1
4
作者 胡启国 王磊 +1 位作者 马鉴望 任渝荣 《机电工程》 CAS 北大核心 2024年第2期353-363,共11页
为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除... 为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除噪、滤波、校准等);然后,参考现有飞行器的坐标系,建立了姿态解算模型,通过姿态角数学模型及运动学分析,构建了EFK状态方程,针对EKF方法参数估计不准确的问题,以分段混沌映射优化初始种群,引入平均位置最优值来避免陷入局部最优的IQPSO-EFK算法,优化EKF的系统、测量噪声的协方差参数;最后,对改进算法和三组姿态误差估计进行了对比实验。研究结果表明:对比三种典型目标函数,IQPSO-EFK相较于普通粒子群算法(QPSO-EFK)具有更强的寻优能力与收敛精度;对比三组旋转速度姿态测量误差,基于IQPSO-EKF算法的姿态测量方法在测量误差时比真实测量误差减少了约86.3%,比扩展卡尔曼滤波减少了约68.7%,比普通粒子群算法减少了约28.2%,证明该算法有效地提高了MEMS传感器测量精度。 展开更多
关键词 竖井掘进 角度测量仪器 姿态测量 微机电系统传感器 多传感器融合 改进量子粒子群-扩展卡尔曼滤波
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
5
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
6
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
六自由度工业机器人运动学参数辨识 被引量:1
7
作者 胡明 郭玉奉 +1 位作者 杨景 杨帆 《机械设计与制造》 北大核心 2025年第6期314-319,共6页
作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分... 作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分别进行辨识仿真,仿真结果表明,误差模型5拥有较高的辨识精度和辨识稳定性,适合用于实际辨识实验。利用高精度相机测量机器人末端位姿,通过粒子群寻优算法求取机器人基坐标系与相机坐标系之间转换矩阵。基于视觉测量数据、量子遗传算法和粒子群算法,以误差模型5作为实际辨识模型分别进行辨识实验。结果表明,基于误差模型5的量子遗传算法辨识后的机器人末端综合位置误差的方差小,其值为0.1159mm2,曲线波动幅度小,且平均误差下降82.96%,有较高的辨识精度和辨识稳定性,可有效提升机器人末端的定位精度,为基于视觉的动态目标捕捉提供条件。 展开更多
关键词 机器人运动学 参数辨识 误差模型 量子遗传算法 粒子群算法 手眼标定
在线阅读 下载PDF
考虑碳排放的铁路路基施工机群配置优化 被引量:1
8
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
9
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
在线阅读 下载PDF
四轮毂电机驱动汽车的差速转向控制研究
10
作者 屈小贞 张昊 +1 位作者 李刚 刘晏 《现代制造工程》 北大核心 2025年第9期90-98,共9页
为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,... 为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,基于改进粒子群优化算法优化模糊全局快速终端滑模控制,计算汽车差速转向所需的附加横摆力矩;下层控制器则基于二次规划算法将所计算的总驱动力矩和附加横摆力矩进行优化分配,进而得到各个车轮的驱动力矩。通过Carsim/Simulink软件进行联合仿真对所设计的控制策略进行验证,结果表明,相较于传统控制策略,差速转向控制策略能更有效地降低汽车在高速转弯时的横摆角速度和质心侧偏角峰值响应。 展开更多
关键词 四轮毂电机 差速转向控制 改进粒子群优化算法 二次规划
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
11
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
自适应时域MPC拖拉机路径跟踪控制研究
12
作者 夏长高 田梦宇 《重庆理工大学学报(自然科学)》 北大核心 2025年第8期52-59,共8页
针对固定参数模型预测控制(model predictive control,MPC)在路径跟踪控制器中跟踪误差大、难以满足精准农业作业需求的情况,以及传统模型预测控制中时域参数固定的局限,提出一种时域参数自适应调整的控制策略。建立拖拉机动力学模型,在... 针对固定参数模型预测控制(model predictive control,MPC)在路径跟踪控制器中跟踪误差大、难以满足精准农业作业需求的情况,以及传统模型预测控制中时域参数固定的局限,提出一种时域参数自适应调整的控制策略。建立拖拉机动力学模型,在MPC算法的基础上,引入改进粒子群优化算法,对时域参数进行自适应调整;搭建MPC轨迹跟踪仿真框架,验证控制器的可行性。仿真结果表明:相比于固定时域MPC控制器,所提出的自适应时域MPC控制器的轨迹跟踪,横向误差绝对均值可降低22%~28%,提高了跟踪精度。 展开更多
关键词 拖拉机 路径跟踪 模型预测控制 改进粒子群优化算法
在线阅读 下载PDF
基于改进Apriori算法的不良驾驶行为关联分析
13
作者 韩锐 于长海 +1 位作者 丁庆国 石朋炜 《现代电子技术》 北大核心 2025年第14期50-56,共7页
不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶... 不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶行为。基于行为数据集,提出一种改进的Apriori关联规则挖掘算法。引入粒子群优化(PSO)算法优化Apriori算法中的支持度与置信度两个重要参数,并使用哈希映射表提高Apriori算法的运行效率。实验结果表明,改进Apriori算法在两种数据集上的运行时间较传统Apriori算法分别提高8.26%、9.27%。关联结果显示,不良驾驶行为并非单独存在,其中急转弯、快速变道、急加速关联性最强,超速行为与急变速次之。该研究能够为驾驶风格量化分析提供参考,可应用于交通事故主动预警系统。 展开更多
关键词 驾驶安全 不良驾驶行为 数据挖掘 关联分析 改进Apriori算法 粒子群优化算法
在线阅读 下载PDF
基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略研究
14
作者 肖义平 赵云峰 《电源学报》 北大核心 2025年第5期96-104,共9页
光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(ma... 光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(maximum power point tracking)控制策略。首先引入混沌Sine映射构造1种非线性随机递增惯性权重,并在粒子群的“个体认知”部分引入高斯扰动,同时利用对数函数构造学习因子,形成基于混沌映射和高斯扰动的改进粒子群算法;通过对6种典型单峰、多峰函数的测试,证明该算法收敛速度更快,不易陷入局部最优;将算法应用于MPPT控制中,并进一步通过不同算法MPPT控制进行对比仿真研究。对比仿真结果表明:在均匀光照强度、局部静态遮荫和动态遮荫3种情况下,基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略均具有更快的收敛速度和更小的搜索振荡幅度,能准确地搜寻到最大功率点,具有更高的寻优精度,从而提高了MPPT系统的发电效率。 展开更多
关键词 局部遮荫 最大功率点跟踪 混沌映射 高斯扰动 改进粒子群优化算法
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
15
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
油田卸水机械臂的设计及其液压控制系统的优化 被引量:3
16
作者 罗明 周建平 +1 位作者 周忠祥 许燕 《机床与液压》 北大核心 2025年第1期194-201,共8页
为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并... 为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并提出一种基于粒子群优化(PSO)算法的模糊PID控制策略。该控制策略引入非线性递减权重,对粒子群算法进行改进,采用改进后的PSO对量化因子和比例因子进行更新迭代,实现对模糊PID参数的优化。采用阶跃信号和正弦信号作为激励,通过上升时间、超调量和平均误差等指标来评价该算法的控制效果。最后,制作油田卸水机械臂样机和控制系统进行性能测试。实验结果表明:使用基于PSO的模糊PID控制时,机械臂调整迅速、运动平稳且定位准确度高,能够满足油田卸水的使用需求。 展开更多
关键词 油田卸水机械臂 液压系统 基于PSO的模糊PID 改进粒子群优化算法
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:2
17
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
18
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
突发公共卫生事件下救援物资配送方案研究 被引量:2
19
作者 帅春燕 张婷 +1 位作者 王文聪 欧阳鑫 《安全与环境学报》 北大核心 2025年第1期227-236,共10页
在突发公共卫生事件封控情况下,大规模应急救援物资的配送需要兼顾效率、成本及安全性,在有限的救援投入下获取最大化资源利用和最小化配送成本,同时避免人员的交叉感染。为此,提出了基于两层配送网络的应急物资配送方案,并提出改进粒... 在突发公共卫生事件封控情况下,大规模应急救援物资的配送需要兼顾效率、成本及安全性,在有限的救援投入下获取最大化资源利用和最小化配送成本,同时避免人员的交叉感染。为此,提出了基于两层配送网络的应急物资配送方案,并提出改进粒子群优化算法(Improved Particle Swarm Optimization Algorithm,IPSOA)对配送路径进行优化。首先,根据行政区划分以及物资需求点的空间分布、各需求点的居民人数和需求量,采用层次聚类算法建立由“物资储备中心-物资集散中心”和“物资集散中心-物资需求点”构成的两层配送网络,每层配送网络都由多配送中心和多需求点组成,该物资配送属于多配送车辆的多中心车辆路径规划问题(Multi-Depot Vehicle Routing Problem,MDVRP)。其次,为了获取合理高效的配送路径,以配送成本最小为目标,构建基于多约束的物资配送优化模型,并提出基于人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)的粒子群优化(AFSA-PSO)算法对两层配送网络进行求解。最后,以某市9个行政区在疫情封控期间的数据为例验证两层配送网络和AFSA-PSO算法的有效性。结果表明:构建的两层配送网络和AFSA-PSO算法能够对多车辆MDVRP问题进行有效求解,科学规划配送路径;算法对比发现,AFSA-PSO能够避免模型过早收敛,且能够获取比遗传算法和粒子群优化算法更少的车辆数和更短的配送路径,有效地降低配送成本,提高经济效益。 展开更多
关键词 公共安全 物资配送路径 改进粒子群优化算法 多车辆多中心车辆路径规划问题 分层聚类 公共卫生事件
在线阅读 下载PDF
永磁同步电机粒子群滑模观测器无位置传感器控制 被引量:2
20
作者 张静 李贵远 +1 位作者 刘杰 崔安迪 《现代电子技术》 北大核心 2025年第6期161-167,共7页
针对永磁同步电机传统滑模观测器存在高频滑模噪声,从而导致精度低、较大抖振以及相位延迟的问题,以及使用固定的滑模参数会使估算精度受到参数干扰而产生误差的情况,造成控制精度比较低,提出一种改进的粒子群优化(IPSO)算法超螺旋滑模... 针对永磁同步电机传统滑模观测器存在高频滑模噪声,从而导致精度低、较大抖振以及相位延迟的问题,以及使用固定的滑模参数会使估算精度受到参数干扰而产生误差的情况,造成控制精度比较低,提出一种改进的粒子群优化(IPSO)算法超螺旋滑模观测器作为无位置传感器控制的改进方法。该方法首先进行永磁同步电机数学模型的建立,然后建立超螺旋滑模观测器,最后应用改进粒子群算法。超螺旋算法采用积分形式来消除高频噪声,减小误差抖振以及相位延迟。引入改进粒子群算法对滑模观测器参数进行滑模参数寻优,通过在线调整滑模系数可以获得较高的收敛速度和稳态精度。仿真和实验结果验证了该控制策略能有效抑制系统抖振,减小相位延迟,且估计精度高,进一步说明该策略在电动汽车中有一定的可行性。 展开更多
关键词 永磁同步电机 无位置传感器控制 超螺旋滑模观测器 改进的粒子群优化算法 滑模参数 高频噪声
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部