期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:5
1
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进K-means聚类算法
在线阅读 下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析 被引量:3
2
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进K-means聚类算法 典型出力场景 出力特性分析
在线阅读 下载PDF
对k-means初始聚类中心的优化 被引量:29
3
作者 仝雪姣 孟凡荣 王志晓 《计算机工程与设计》 CSCD 北大核心 2011年第8期2721-2723,2788,共4页
针对传统k-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布选取初始聚类中心的改进k-means算法。该算法利用贪心思想构建K个数据集合,集合的大小与数据的实际分布密切相关,集合中的数据彼此间相互靠近。取集合中数据的平均... 针对传统k-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布选取初始聚类中心的改进k-means算法。该算法利用贪心思想构建K个数据集合,集合的大小与数据的实际分布密切相关,集合中的数据彼此间相互靠近。取集合中数据的平均值作为初始聚类中心,由此得到的初始聚类中心非常接近迭代聚类算法期待的聚类中心。理论分析和实验结果表明,改进算法能改善其聚类性能,并能得到稳定的聚类结果,取得较高的分类准确率。 展开更多
关键词 聚类 K-means算法 数据分布 初始聚类中心 改进算法
在线阅读 下载PDF
基于改进K-Means聚类和BP神经网络的台区线损率计算方法 被引量:176
4
作者 李亚 刘丽平 +3 位作者 李柏青 易俊 王泽忠 田世明 《中国电机工程学报》 EI CSCD 北大核心 2016年第17期4543-4551,共9页
配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台... 配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台区线损率的方法,并通过编程加以实现。根据样本的电气特征参数,提出了改进K-Means聚类算法,将台区样本分类,解决了台区线损率数值分散的问题。在此基础上,采用LM算法优化的BP神经网络模型对样本数据按类进行训练,利用BP神经网络拟合样本线损率与电气特征参数之间的关系,得到其变化规律。以某地区601个台区样本数据为例进行仿真计算,验证了所提方法的准确性。结果表明,与标准BP神经网络模型相比,LM算法优化的BP神经网络模型具有快速收敛、高精度等优点。 展开更多
关键词 低压台区 电气特征参数 线损率 改进K-means聚类算法 LM算法优化的BP神经网络
在线阅读 下载PDF
基于改进K-means聚类的在线新闻评论主题抽取 被引量:17
5
作者 夏火松 李保国 杨培 《情报学报》 CSSCI 北大核心 2016年第1期55-65,共11页
新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先... 新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先在预处理阶段增加同义词替换和自动构建领域词典的部分,改善了数据稀疏性和高维性。其次,提出了K-means改进算法,用隐藏长评论-最大距离法选初始点,解决了初始点多为离群点的问题,用方差拐点确定K值,解决了预先设定聚类个数的问题,实验发现了先用BW权重选初始点,再用新提出的BW-DF权重聚类的效果最好。最后,将改进算法与原算法的聚类效果比较,实验结果表明,改进算法准确率高,抽取新闻评论主题的效果明显。 展开更多
关键词 在线新闻评论 K—means聚类改进 主题抽取 同义词替换 分词领域词典
在线阅读 下载PDF
基于云计算和改进K-means算法的海量用电数据分析方法 被引量:31
6
作者 张承畅 张华誉 +1 位作者 罗建昌 何丰 《计算机应用》 CSCD 北大核心 2018年第1期159-164,共6页
针对小区居民用电数据挖掘效率低、数据量大等难题,进行了基于云计算和改进K-means算法的海量用电数据分析方法研究。针对传统K-means算法中存在初始聚类中心和K值难确定的问题,提出一种基于密度的Kmeans改进算法。首先,定义样本密度、... 针对小区居民用电数据挖掘效率低、数据量大等难题,进行了基于云计算和改进K-means算法的海量用电数据分析方法研究。针对传统K-means算法中存在初始聚类中心和K值难确定的问题,提出一种基于密度的Kmeans改进算法。首先,定义样本密度、簇内样本平均距离的倒数和簇间距离三者乘积为权值积,通过最大权值积法依次确定聚类中心,提高了聚类的准确率;然后,基于MapReduce模型实现改进算法的并行化,提高了聚类的效率;最后,以小区400户家庭用电数据为基础,进行海量电力数据的挖掘分析实验。以家庭为单位,提取出用户的峰时耗电率、负荷率、谷电负荷系数以及平段用电量百分比,建立聚类的数据维度特征向量,完成相似用户类型的聚类,同时分析出各类用户的行为特征。基于Hadoop集群的实验结果证明提出的改进K-means算法运行稳定、可靠,具有很好的聚类效果。 展开更多
关键词 用电数据 云计算 改进K-means算法 MAPREDUCE模型 并行化
在线阅读 下载PDF
基于改进NL-means算法的显微CT图像降噪 被引量:7
7
作者 李保磊 杨民 李俊江 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第7期833-837,共5页
显微CT(Computed Tomography)采用微焦点射线源,射线剂量低,CT图像噪声大,对其降噪十分必要.综述了现存主要CT图像降噪算法及其优缺点,介绍了NL(nonlo-cal)-means算法,根据实验结果分析了其会在图像平滑区域引入人工伪影的不足.根据NL-m... 显微CT(Computed Tomography)采用微焦点射线源,射线剂量低,CT图像噪声大,对其降噪十分必要.综述了现存主要CT图像降噪算法及其优缺点,介绍了NL(nonlo-cal)-means算法,根据实验结果分析了其会在图像平滑区域引入人工伪影的不足.根据NL-means算法的不足,在原算法中引入图像的梯度信息,提出了改进的降噪算法,改进算法保持了原算法优良的降噪功能,并能有效抑制人工伪影,且能够提高图像细节对比度,实验结果验证了改进算法的有效性. 展开更多
关键词 显微CT 降噪 人工伪影 改进NL-means算法 对比度
在线阅读 下载PDF
基于改进的密度峰值算法的K-means算法 被引量:12
8
作者 杜洪波 白阿珍 朱立军 《统计与决策》 CSSCI 北大核心 2018年第18期20-24,共5页
针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中... 针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中心,弥补了K-means算法初始聚类中心随机选取导致易陷入局部最优解的缺陷;其次运用K-means算法进行迭代,并且引入熵值法计算距离优化聚类。在UCI数据集上的实验表明,该算法得到较好的初始聚类中心和较稳定的聚类结果,并且收敛速度也较快,证明了该算法的可行性。 展开更多
关键词 K-means算法 改进的DPC算法 聚类 熵值法 初始聚类中心 优化聚类
在线阅读 下载PDF
改进的k-means聚类算法在客户细分中的应用研究 被引量:8
9
作者 杜巍 赵春荣 黄伟建 《河北经贸大学学报》 CSSCI 北大核心 2014年第1期118-121,共4页
聚类分析是数据挖掘的一种重要方法,将它应用在客户细分中,可以识别出不同的客户群,从而针对不同的客户群制定相应的营销政策,使企业效益最大化。针对聚类分析中k-means算法的不足,运用改进的聚类算法对旅游业客户进行细分,从而使企业... 聚类分析是数据挖掘的一种重要方法,将它应用在客户细分中,可以识别出不同的客户群,从而针对不同的客户群制定相应的营销政策,使企业效益最大化。针对聚类分析中k-means算法的不足,运用改进的聚类算法对旅游业客户进行细分,从而使企业能够更合理地细分、规划客户群组,针对不同需求的客户群体进行区别对待,得到了较好的效果,验证了改进算法的可行性和高效性。 展开更多
关键词 聚类分析 客户细分 数据挖掘 改进的k—means算法 客户群
在线阅读 下载PDF
基于主成分分析和改进K-means算法的极轨气象卫星数据处理软件分型研究 被引量:4
10
作者 林曼筠 赵现纲 +1 位作者 皇甫大鹏 陈平 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期656-662,共7页
提出了一种基于主成分分析方法和改进K-means算法的气象软件分型方法,该方法利用软件运行时资源消耗情况来刻画软件运行特征和对软件分类.首先引入主成分分析方法对软件运行特征进行降维;然后采用改进K-means算法对气象数据处理软件进... 提出了一种基于主成分分析方法和改进K-means算法的气象软件分型方法,该方法利用软件运行时资源消耗情况来刻画软件运行特征和对软件分类.首先引入主成分分析方法对软件运行特征进行降维;然后采用改进K-means算法对气象数据处理软件进行分型;最后结合主成分分析结果解释各类软件运行特征的意义.提出了一套指标体系刻画软件,使用该指标体系可以判断极轨气象卫星数据处理的各类软件运行是否正常,通过实验证明,该方法的分类结果与实际情况相符.同时,该指标体系可作为优化软硬件资源分配和提高软件运行效率的依据. 展开更多
关键词 主成分分析 改进K-means算法 特征分析 相似度算法 指标体系
在线阅读 下载PDF
基于改进流形距离的粗糙集k-means聚类算法 被引量:4
11
作者 欧慧 夏卓群 武志伟 《计算机工程与应用》 CSCD 北大核心 2016年第14期84-89,共6页
针对现有的基于流形距离的聚类算法对"绝对流形"数据集较"相对流形"数据集聚类效果佳和参数ρ在较大范围内变化时,聚类性能较差等问题,提出基于改进流形距离的粗糙集k-means聚类算法。该算法通过用属性划分和最大... 针对现有的基于流形距离的聚类算法对"绝对流形"数据集较"相对流形"数据集聚类效果佳和参数ρ在较大范围内变化时,聚类性能较差等问题,提出基于改进流形距离的粗糙集k-means聚类算法。该算法通过用属性划分和最大最小距离选择初始聚类中心,以改进的流形距离和粗糙集优化k-means,并结合终止判断条件以达到解决边界数据聚类问题和提升聚类效果的目的。仿真结果表明:该算法对"绝对流形"和"相对流形"数据集聚类效果均有较好改善,且参数变化对聚类性能影响较大。 展开更多
关键词 K-means算法 最大最小距离 改进流形距离 粗糙集 适应度函数
在线阅读 下载PDF
基于改进型K-means聚类的温度插值算法 被引量:6
12
作者 杜景林 沈晓燕 《计算机工程与设计》 北大核心 2016年第11期2992-2998,共7页
针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RB... 针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RBFNN隐含层的初始参数,利用正交最小二乘法求隐含层权值,建立RBFNN温度空间插值模型,用已有温度数据加以验证。实验结果表明,该算法能够解决K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的问题,具有较高的插值精度。 展开更多
关键词 改进型K-means聚类算法 聚类中心 径向基神经网络 正交最小二乘法 温度插值
在线阅读 下载PDF
基于改进K-means算法的WSN簇头节点数据融合 被引量:4
13
作者 高红菊 刘艳哲 陈莎 《农业机械学报》 EI CAS CSCD 北大核心 2015年第S1期162-167,共6页
无线传感器网络数据融合能够减少节点能耗、延长网络生命周期,近年来受到了广泛关注。已有的应用于农业监测的空间数据融合算法多采用取平均值等方法将一定区域内监测到的数据融合成一个值。而农田环境监测具有监测范围广、监测点多、... 无线传感器网络数据融合能够减少节点能耗、延长网络生命周期,近年来受到了广泛关注。已有的应用于农业监测的空间数据融合算法多采用取平均值等方法将一定区域内监测到的数据融合成一个值。而农田环境监测具有监测范围广、监测点多、监测数据量大的特点,监测数据间除了冗余性还具有差异性,因此数据融合应该在消除冗余的同时保留数据的差异。针对农业监测的这一特点,提出在簇头节点应用聚类算法进行空间数据融合,通过聚类减少数据发送量,降低能耗;同时将差异较大的参量聚类到不同类别中以保留数据间的差异。此外,还提出了一种应用于WSN簇头节点的自适应改进K-means聚类算法,仿真结果表明,所提算法融合后的数据上传量比没有融合减少41.19%,消除了数据冗余;算法融合前后最大误差低于取平均值法误差的36%,保留了数据差异性。在没有明确误差要求时,该算法能够在尽量减少数据上传量的同时保持相对误差低于10%,避免了因聚类个数不当引起的巨大误差。而在有具体误差要求时,该算法融合前后的绝对误差严格低于要求误差。 展开更多
关键词 无线传感器网络 改进K-means算法 数据差异性 数据融合
在线阅读 下载PDF
基于长短期记忆神经网络和改进型K-means聚类算法的居民峰谷时段划分模型 被引量:10
14
作者 江兵 李国荣 +1 位作者 孙赵盟 庞宗强 《现代电力》 北大核心 2021年第6期620-627,I0004,I0005,共10页
为了解决传统峰谷时段划分方法因只选取单一典型日而无法在较长时间范围内适用的问题,提出一种基于长短期记忆神经网络(long short-term memory,LSTM)和改进型K-means聚类算法的居民峰谷时段划分模型:首先对居民用户一整年的负荷数据进... 为了解决传统峰谷时段划分方法因只选取单一典型日而无法在较长时间范围内适用的问题,提出一种基于长短期记忆神经网络(long short-term memory,LSTM)和改进型K-means聚类算法的居民峰谷时段划分模型:首先对居民用户一整年的负荷数据进行有效性检查和归一化处理,保证数据的准确可靠;接着将处理后的负荷数据按照不同季节及不同日期类型进行相应的分类,保证分类的数据具有较强的相似性;然后将数据按分类分别加入LSTM进行训练,获得用户在不同分类下的负荷特征数据;最后利用改进型K-means聚类算法对训练得到的负荷特征数据进行聚类分析,并依据相应的权重矩阵及划分原则获得最终的时段划分结果。结果表明,相对于经典及当地的时段划分,所提方法的时段划分轮廓系数平均值更大,方差更小,更能反映居民用户实际的用电特点及用电规律,有利于挖掘用户侧需求响应潜力,获得更优的削峰填谷效果。 展开更多
关键词 峰谷时段划分 长短期记忆神经网络 改进型Kmeans算法 聚类分析 轮廓系数
在线阅读 下载PDF
融合MeanShift和改进SURF算法的目标定位策略 被引量:8
15
作者 张毅 张瀚 韩晓园 《控制工程》 CSCD 北大核心 2020年第4期629-634,共6页
在工业环境中,针对工业机器人进行抓取物品操作时定位耗时长,精度低的问题,提出一种融合MeanShift算法和改进SURF算法的分层式定位策略,快速精确地定位物体。首先根据双目视觉系统采集的目标物体图片信息,采用MeanShift算法进行初步处理... 在工业环境中,针对工业机器人进行抓取物品操作时定位耗时长,精度低的问题,提出一种融合MeanShift算法和改进SURF算法的分层式定位策略,快速精确地定位物体。首先根据双目视觉系统采集的目标物体图片信息,采用MeanShift算法进行初步处理,切割出目标图片信息;然后利用改进后SURF算法对目标区域进行特征点对的匹配以及筛选;最后将匹配好的特征点对根据三角形测量原理,实现物体三维坐标的精确定位。实验验证了在工业机器人抓取物品时,本文所提方法对物体定位速度与精度上有所提升。 展开更多
关键词 meansHIFT算法 改进SURF算法 特征匹配 三角形测量原理 双目视觉系统
在线阅读 下载PDF
一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取方法 被引量:2
16
作者 王向 李月凤 +1 位作者 王震洲 张佳佳 《河北科技大学学报》 CAS 北大核心 2023年第4期356-367,共12页
针对K-Means算法对初始聚类中心的依赖性较高,容易出现局部最优停滞的问题,提出一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取算法。首先,将小麦图像转换到HSV色彩空间;然后,用改进樽海鞘群算法进行全局寻优,以获得全局最优值作为K-... 针对K-Means算法对初始聚类中心的依赖性较高,容易出现局部最优停滞的问题,提出一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取算法。首先,将小麦图像转换到HSV色彩空间;然后,用改进樽海鞘群算法进行全局寻优,以获得全局最优值作为K-Means算法的初始聚类中心,接着运用K-Means算法进行局部寻优,直到迭代完成;最终,输出经过分割的小麦图像。为了评估算法性能,使用12个基准函数对ISSA及其他智能优化算法进行对比测试,同时将改进樽海鞘群算法优化K-Means应用于小麦覆盖度提取。结果表明,ISSA算法在优化精度和收敛速度上均超越其他算法,鲁棒性也得到了显著提高。与其他算法相比,ISSA-K算法分割后的小麦图像纹理比较清晰,效果更佳,同时具有更加高效的优势,可用于小麦覆盖度的提取,具有较强的实用性。 展开更多
关键词 图像处理 K-means 改进樽海鞘群算法 HSV色彩空间 图像分割 小麦覆盖度提取
在线阅读 下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
17
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 聚类分析 K⁃means聚类算法 聚类中心选取 K⁃means算法改进 初始中心点
在线阅读 下载PDF
基于异常点检测和改进K-means算法的台区用户相别辨识方法 被引量:26
18
作者 张然 孙晓璐 +4 位作者 何仲潇 薛莉思 陈维民 徐严军 连利波 《智慧电力》 北大核心 2020年第1期91-96,共6页
解决配电台区用户线变不匹配问题是推进配电网智能化管理的关键一步。大数据技术的快速普及为实现低成本、高效率的台区用户相别辨识提供了可能。提出了基于异常点检测和改进K-means算法的台区用户相别辨识方法。首先通过局部因子算法... 解决配电台区用户线变不匹配问题是推进配电网智能化管理的关键一步。大数据技术的快速普及为实现低成本、高效率的台区用户相别辨识提供了可能。提出了基于异常点检测和改进K-means算法的台区用户相别辨识方法。首先通过局部因子算法对聚类分析数据进行预处理,剔除不属于待分析台区的用户数据。然后,根据实际应用场景特点对K-means算法进行改进,包括确定聚类个数、初始质心,并选用相关系数作为评估样本相似度的指标。最后利用改进的K-means算法对预处理后的数据进行聚类分析,实现低压台区用户相别的精准辨识。算例分析表明,所提方法能够有效提升用户辨识准确率,且在不同的数据环境中可保持较高的稳定性。 展开更多
关键词 配电网 台区 相别辨识 局部异常因子算法 改进K-means
在线阅读 下载PDF
基于改进k~*-means算法的不完整公交到站时间填充 被引量:3
19
作者 赵霞 张勇 +2 位作者 尹宝才 刘浩 张可 《北京工业大学学报》 CAS CSCD 北大核心 2018年第1期135-143,共9页
为了有效填充不完整的公交到站时间信息,提出了一种基于改进k~*-means算法的不完整到站时间的填充方法.根据到站流动人数、到站所属时段、站点间距离、站点间运行时间特征加权度量站点间相似性,对现有kmeans算法进行改进以构建公交站点... 为了有效填充不完整的公交到站时间信息,提出了一种基于改进k~*-means算法的不完整到站时间的填充方法.根据到站流动人数、到站所属时段、站点间距离、站点间运行时间特征加权度量站点间相似性,对现有kmeans算法进行改进以构建公交站点间运行时间完备信息表.以北京市地面公交运行数据为例,验证了该方法的可靠性,并与线性拟合、最近邻插值、k-means算法等填充方法进行了对比试验.结果表明:该方法对不完整到站时间的填充率高于97%,且对已知到站时间平均填充误差不高于100 s. 展开更多
关键词 公共交通 数据填充 聚类分析 改进k*-means算法
在线阅读 下载PDF
一种基于改进K-means算法的空间群划分方法 被引量:3
20
作者 汤奋 游雄 +2 位作者 李钦 王玮琦 唐锦波 《火力与指挥控制》 CSCD 北大核心 2019年第11期117-120,126,共5页
空间群划分是兵力分群的重要环节,其关键在于确定“距离”度量函数、分群数目和初始分群中心。传统算法的初始聚类中心和聚类数目不固定,直接用于空间群划分将使得划分结果不稳定。为此,提出了一种基于改进算法的空间群划分方法。利用... 空间群划分是兵力分群的重要环节,其关键在于确定“距离”度量函数、分群数目和初始分群中心。传统算法的初始聚类中心和聚类数目不固定,直接用于空间群划分将使得划分结果不稳定。为此,提出了一种基于改进算法的空间群划分方法。利用了现有空间群划分方法中的距离函数改进策略计算敌方作战单元两两之间的“距离”,引入一种快速搜寻高密度点的方法,确定了初始分群中心和分群数目,通过仿真实验验证了该方法的有效性。 展开更多
关键词 兵力分群 空间群划分 稳定性 改进K-means算法
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部