A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is establis...A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.展开更多
In this paper,under the assumption that the labor force function increases strictly and is bounded and the labor force growth rate function decreases monotonically from a positive value to zero,we obtain an improved S...In this paper,under the assumption that the labor force function increases strictly and is bounded and the labor force growth rate function decreases monotonically from a positive value to zero,we obtain an improved Solow Swan model. We prove that the per capita capital trends stabilitily to the steady state of the classical Solow Swan model with zero the labor force growth rate. Two comparison theorems,a limited theorem and a stability theorem are given. At the end of this paper,we give an example and discuss the economic meaning of this model and the theorems.展开更多
Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different a...Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.展开更多
It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under ra...It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.展开更多
In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-s...In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-shock waves using the method of generalized characteristic analysis.We obtain the solutions constructively for initial data containing the Dirac measure by taking the limit of the solutions for that with three piecewise constants.Moreover,we analyze different kinds of wave interactions,including the interactions of theδ-shock waves with elementary waves.展开更多
We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps betwe...We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combi...Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.展开更多
Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained sho...Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained show that the proton soliton is very robust against thermal perturbation and damping of medium, and is thermally stable in the temperature range T ≤ 273 K. From the simulation we find out that the mobility (or velocity) of proton conduction in ice crystal is a nonmonotonic function of temperature in the temperature range 170-273 K: i.e., it increases initially, reaches a maximum at about 191 K, subsequently decreases to a minimum at about 211 K, and then increases again. This changed rule of mobility is qualitatively consistent with its experimental data in ice in the same temperature range. This result provides an evidence for existence of solitons in the hydrogen-bonded systems.展开更多
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the...In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field.展开更多
The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its math...The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its mathematical model are presented. Then, the improved averaged model, which covers both the switching frequency and the leakage inductance, is established, and the effects of these two parameters on the slow-scale stability in the system are analyzed. It is found that the occurrence of Hopf bifurcation in the system is the main reason for losing its slow-scale stability and both the switching frequency and the leakage inductance have an important effect on this slow-scale stability. Finally, the effectiveness of the improved averaged model and that of the corresponding theoretical analysis are confirmed by the simulation results and the experimental results.展开更多
We present experimental measurements of L-shell production cross sections Lα, Lβ and Lγ for tantalum and thulium by electron impact at incident electron energies from about one to three times the threshold energy. ...We present experimental measurements of L-shell production cross sections Lα, Lβ and Lγ for tantalum and thulium by electron impact at incident electron energies from about one to three times the threshold energy. From the experimental data, the total production cross section and mean ionization cross section are deduced. The influence of electrons reflected from the substrate is corrected by the electron transport bipartition model. Tile measured cross sections are compared with the theoretical predictions.展开更多
The microkinetics of H_2S removal by ZnO desulfurization in H_2O-CO_2-N_2,H_2O-CO-N_2 and H_2O-O_2-N_2 gas mixtures was studied by thermogravimetric analysis. Experimentswere carried out with 100-120 mesh ZnO powder a...The microkinetics of H_2S removal by ZnO desulfurization in H_2O-CO_2-N_2,H_2O-CO-N_2 and H_2O-O_2-N_2 gas mixtures was studied by thermogravimetric analysis. Experimentswere carried out with 100-120 mesh ZnO powder at temperatures from 473 K to 563 K. The results showthat the kinetic behaviors of desulfurization could all be described by an improved shrinking-coremodel. The activation energies of the reaction and the diffusion in different gas atmosphere's wereestimated.展开更多
The Lα, Lβ and Lγ x-ray production cross sections of Dy and Sm by electron impact are measured at energies from near threshold to tens of keV. In the experiments, thin targets with thick substrates are used. Meanwh...The Lα, Lβ and Lγ x-ray production cross sections of Dy and Sm by electron impact are measured at energies from near threshold to tens of keV. In the experiments, thin targets with thick substrates are used. Meanwhile, the electron transport bipartition model is used to eliminate the influence of electrons reflected from the thick substrates on measurements. The measured x-ray production cross sections are also compared with the theoretical predictions by Gryzinski and McGuire.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0805804,2017YFC0805801)
文摘A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.
文摘In this paper,under the assumption that the labor force function increases strictly and is bounded and the labor force growth rate function decreases monotonically from a positive value to zero,we obtain an improved Solow Swan model. We prove that the per capita capital trends stabilitily to the steady state of the classical Solow Swan model with zero the labor force growth rate. Two comparison theorems,a limited theorem and a stability theorem are given. At the end of this paper,we give an example and discuss the economic meaning of this model and the theorems.
基金supported by the National Natural Science Foundation of China(Grant No.11975307).
文摘Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.
文摘It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.
基金supported by the Natural Science Foundation of Zhejiang(LQ18A010004)Matematical Analysis,The First class courses in Zhejiang Province(210052)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(210039)supported by the National Natural Science Foundation of China(11771442)。
文摘In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-shock waves using the method of generalized characteristic analysis.We obtain the solutions constructively for initial data containing the Dirac measure by taking the limit of the solutions for that with three piecewise constants.Moreover,we analyze different kinds of wave interactions,including the interactions of theδ-shock waves with elementary waves.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874080 and 11734002)supported as a Simons Investigator by the Simons Foundation (Grant No. 511064)。
文摘We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金Project supported by the National Natural Science Foundation of China (Grant No.62371388)the Key Research and Development Projects in Shaanxi Province,China (Grant No.2023-YBGY-044)。
文摘Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.
基金Supported by the National Natural Science Foundation of China under Grant No 19974034.
文摘Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained show that the proton soliton is very robust against thermal perturbation and damping of medium, and is thermally stable in the temperature range T ≤ 273 K. From the simulation we find out that the mobility (or velocity) of proton conduction in ice crystal is a nonmonotonic function of temperature in the temperature range 170-273 K: i.e., it increases initially, reaches a maximum at about 191 K, subsequently decreases to a minimum at about 211 K, and then increases again. This changed rule of mobility is qualitatively consistent with its experimental data in ice in the same temperature range. This result provides an evidence for existence of solitons in the hydrogen-bonded systems.
文摘In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field.
基金Project supported by the National Natural Science Foundation of China(Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2012JQ7026)the Fundamental Research Funds for the Central Universities,China(Grant No.2012jdgz09)the Fund from the State Key Laboratory of Electrical Insulation and Power Equipment,China(Grant No.EIPE12303)
文摘The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its mathematical model are presented. Then, the improved averaged model, which covers both the switching frequency and the leakage inductance, is established, and the effects of these two parameters on the slow-scale stability in the system are analyzed. It is found that the occurrence of Hopf bifurcation in the system is the main reason for losing its slow-scale stability and both the switching frequency and the leakage inductance have an important effect on this slow-scale stability. Finally, the effectiveness of the improved averaged model and that of the corresponding theoretical analysis are confirmed by the simulation results and the experimental results.
基金Supported by the National Natural Science Foundation of China under Grant No 10275044, and the International Atomic Energy Agency Research Programme of China under Grant No 12354/R1.
文摘We present experimental measurements of L-shell production cross sections Lα, Lβ and Lγ for tantalum and thulium by electron impact at incident electron energies from about one to three times the threshold energy. From the experimental data, the total production cross section and mean ionization cross section are deduced. The influence of electrons reflected from the substrate is corrected by the electron transport bipartition model. Tile measured cross sections are compared with the theoretical predictions.
基金The author would like to express gratitude to the National Key Fundamental Research Project of Science and Technology(973)(No.G1999022104-1)with their financial aid.
文摘The microkinetics of H_2S removal by ZnO desulfurization in H_2O-CO_2-N_2,H_2O-CO-N_2 and H_2O-O_2-N_2 gas mixtures was studied by thermogravimetric analysis. Experimentswere carried out with 100-120 mesh ZnO powder at temperatures from 473 K to 563 K. The results showthat the kinetic behaviors of desulfurization could all be described by an improved shrinking-coremodel. The activation energies of the reaction and the diffusion in different gas atmosphere's wereestimated.
基金Supported by the National Natural Science Foundation of China under Grant No 10275044 and the International Atomic Energy Agency Research Programme of China under Grant No 12354/R1.
文摘The Lα, Lβ and Lγ x-ray production cross sections of Dy and Sm by electron impact are measured at energies from near threshold to tens of keV. In the experiments, thin targets with thick substrates are used. Meanwhile, the electron transport bipartition model is used to eliminate the influence of electrons reflected from the thick substrates on measurements. The measured x-ray production cross sections are also compared with the theoretical predictions by Gryzinski and McGuire.