期刊文献+
共找到431篇文章
< 1 2 22 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(emd) Ensemble emd(Eemd) Complete Eemd with adaptive noise(CEemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
2
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 empirical mode decomposition(emd) k-nearest neighbor(KNN) principal component analysis(PCA) time series
在线阅读 下载PDF
APPLICATION OF IMPROVED EMD IN VIBRATION SIGNAL FEATURE EXTRACTION OF VEHICLE
3
作者 辛江慧 安木金 +1 位作者 张雨 任成龙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期193-198,共6页
In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD ... In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems. 展开更多
关键词 empirical mode decomposition emd) vehicle vibration signal multi-autocorrelation feature ex- traction
在线阅读 下载PDF
基于SSA-IWT-EMD的滚动轴承故障诊断方法
4
作者 雷春丽 焦孟萱 +3 位作者 樊高峰 刘世超 薛林林 李建华 《北京航空航天大学学报》 北大核心 2025年第4期1152-1162,共11页
针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各... 针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各参数进行全局寻优,实现滚动轴承信号降噪。提出一种综合指标P对EMD产生的分量进行选取重构,突出信号的故障特征信息。采用包络谱分析实现轴承的故障诊断。仿真和实测结果验证了所提方法的有效性;同时与单一指标选取分量的方法及文献方法进行对比,说明了综合指标P和所提方法具有更强的降噪能力及特征提取能力,包络谱幅值及倍频成分更明显,可以更好地实现对滚动轴承的故障诊断。 展开更多
关键词 滚动轴承 改进阈值 综合指标 经验模态分解 故障诊断
在线阅读 下载PDF
基于EMD和FFT的自适应X射线脉冲星信号降噪方法
5
作者 王璐 张爽 《电波科学学报》 北大核心 2025年第2期381-394,共14页
X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节... X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节信息,一直是X射线脉冲星信号降噪处理中的难点。在经验模态分解(empirical mode decomposition,EMD)阈值降噪中,混叠内蕴模态分量的个数、阈值函数和阈值是影响降噪效果的三个主要因素。本文利用快速傅里叶变换对混叠内蕴模态分量进行分析,据其频域稀疏度筛选出含噪声的高频混叠内蕴模态分量;针对阈值函数和阈值的选择问题,提出了利用复合评价指标选择出阈值函数和阈值估计方法的最优组合,并通过数值仿真验证了该方法的有效性。仿真和测试结果表明本文方法在脉冲星导航方面可能具有应用前景。 展开更多
关键词 脉冲星 经验模态分解(emd) 快速傅里叶变换(FFT) 复合评价指标(CEI) 信号降噪
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
6
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
7
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
在线阅读 下载PDF
基于改进EMD的爆破振动信号降噪方法研究
8
作者 闫鹏 张云鹏 +1 位作者 周倩倩 杨曦 《振动与冲击》 北大核心 2025年第1期212-220,共9页
针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类... 针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类特性以及小波包的降噪优势,不仅可以有效抑制端点效应,也具有良好的降噪效果。研究结果表明:在仿真信号端点效应抑制试验中,与多项式拟合和边界局部特征延拓方法相比,改进EMD方法的能量误差和均方误差最小。在实测爆破振动信号降噪中,与EMD和变分模态分解(VMD)方法相比,改进EMD方法的信噪比(20.94 dB)最大,均方根误差(0.0031)最小。改进EMD方法不仅可以较好保存中低频(0~200 Hz)信号能量,对200 Hz以上高频噪声也具有良好滤除效果。 展开更多
关键词 经验模态分解(emd) 爆破振动信号 端点效应 K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于EMD的无线通信网络信号干扰抑制方法
9
作者 伊念念 《通信电源技术》 2025年第8期143-145,共3页
干扰的存在会导致无线通信网络信号质量下降,影响无线通信网络的性能和稳定性,因此提出基于经验模态分解(Empirical Mode Decomposition,EMD)的无线通信网络信号干扰抑制方法。对无线通信网络信号进行EMD后得到一系列本征模态函数(Intri... 干扰的存在会导致无线通信网络信号质量下降,影响无线通信网络的性能和稳定性,因此提出基于经验模态分解(Empirical Mode Decomposition,EMD)的无线通信网络信号干扰抑制方法。对无线通信网络信号进行EMD后得到一系列本征模态函数(Intrinsic Mode Function,IMF)分量,对每个IMF分量进行离散小波变换,将信号分解为不同尺度的离散小波系数并进行阈值处理,然后去除信号中的噪声,将去除噪声后的IMF分量与残差分量进行合并得到重构后的信号,从而实现干扰抑制。实验结果表明,在多种干扰下,设计方法具有更高的信噪比,表明这一方法在干扰抑制方面具有显著优势。 展开更多
关键词 经验模态分解(emd) 无线通信网络 信号干扰抑制 离散小波变换 信号重构
在线阅读 下载PDF
基于改进EMD和ARMA的MEMS陀螺仪随机误差补偿方法 被引量:2
10
作者 曾鑫 先苏杰 +2 位作者 王康 司鹏 吴志林 《兵工学报》 EI CAS CSCD 北大核心 2024年第9期3297-3306,共10页
微机电系统(Micro-Electro-Mechanical System,MEMS)陀螺仪的随机误差限制了其测量精度。为了降低MEMS陀螺仪的随机误差,提出一种基于改进的经验模态分解(Empirical Mode Decomposition,EMD)和优化的自回归滑动平均(Autoregressive Movi... 微机电系统(Micro-Electro-Mechanical System,MEMS)陀螺仪的随机误差限制了其测量精度。为了降低MEMS陀螺仪的随机误差,提出一种基于改进的经验模态分解(Empirical Mode Decomposition,EMD)和优化的自回归滑动平均(Autoregressive Moving Average,ARMA)模型的方法。该方法在传统EMD的基础上,结合Hausdorff距离和累积标准化模态均值以提取信号中的噪声和趋势项,对剩余信号进行ARMA建模和滤波。采用沙猫群优化算法优化建模的定阶过程,采用改进的自适应滤波补偿随机误差。试验结果表明:相较于传统EMD和传统ARMA方法,新方法在静态试验中得到的均方根误差分别降低52.5%和34.4%,在动态试验中得到的均方根误差分别降低50%和32.35%;新方法有效抑制了随机误差,提升了MEMS陀螺仪的使用精度。 展开更多
关键词 微机电系统 陀螺仪 改进经验模态分解 时间序列建模 HAUSDORFF距离 自适应滤波
在线阅读 下载PDF
Sensitivity of intrinsic mode functions of Lorenz system to initial values based on EMD method 被引量:4
11
作者 邹明玮 封国林 高新全 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1384-1390,共7页
Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales... Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction. 展开更多
关键词 empirical mode decomposition emd) sensitivity initial values hierarchical level
在线阅读 下载PDF
基于EMD的地震数据速度谱优化方法 被引量:1
12
作者 刘玉萍 张衡 +1 位作者 张宝金 顾元 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期465-472,共8页
地震波在地层中的传播速度可间接反映地下岩性及地质构造特征,速度的提取与分析影响地震数据处理和解释全过程。目前,速度谱分辨率低,导致拾取的速度不准确,构建的速度模型精度经常不能满足复杂地质构造的地震成像要求。为此,提出基于... 地震波在地层中的传播速度可间接反映地下岩性及地质构造特征,速度的提取与分析影响地震数据处理和解释全过程。目前,速度谱分辨率低,导致拾取的速度不准确,构建的速度模型精度经常不能满足复杂地质构造的地震成像要求。为此,提出基于经验模态分解(EMD)的地震数据速度谱优化方法。该方法是一种频移处理技术,能有效提高地震数据低频端能量的信噪比。首先,基于Hilbert变换获得地震数据的瞬时振幅;其次,对瞬时振幅进行EMD;然后,筛选分解后的本征模量(IMF),选择具有有益表达速度谱信息的本征模态模量;最后,构建新的速度谱数据。经过优化后的地震数据频谱分辨率更高,有效频带向低频端移动。实验测试和实际资料处理结果表明,所提方法能有效扩大速度谱拾取的寻优区间,提高速度分析准确性,提升地震资料成像品质。该方法在成果数据处理和速度谱优化方面具有广泛的应用价值。 展开更多
关键词 HILBERT变换 经验模态分解(emd) 速度谱 频移 地震数据
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:2
13
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEemdAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于改进EMD方法与11/2谱的DEMON谱提取方法
14
作者 高博超 张群飞 +1 位作者 李岳珩 崔晓东 《声学技术》 CSCD 北大核心 2024年第2期260-267,共8页
噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mod... 噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mode Decomposition,EMD)方法获得一系列固有模态函数(Intrinsic Mode Function,IMF),依据各阶模态函数与原信号的相关程度,筛选出更具代表性的几阶固有模态函数进行解调,再对解调的结果运用11/2维谱分析方法进行谱分析以抑制高斯噪声,通过这种方法获得的DEMON谱信噪比优于传统方法。实测湖试数据分析结果表明,该改进方法可以有效地进行特征提取,结果优于经典DEMON谱分析方法;该改进方法具有一定的实用性,有利于进行后续目标分类识别。 展开更多
关键词 特征提取 经验模态分解(emd) 固有模态函数 11/2维谱分析
在线阅读 下载PDF
强噪声条件下基于EMD-AE优选特征的离心泵多故障诊断方法
15
作者 向明胜 冯坤 +1 位作者 贾韶辉 赵衍 《振动与冲击》 EI CSCD 北大核心 2024年第23期66-74,共9页
工业离心泵故障诊断中常常受到噪声的干扰,针对这一问题,提出一种强噪声条件下基于经验模态分解(empirical mode decomposition,EMD)和自编码器的优选特征方法。首先利用补偿距离评估技术确定出有效的时频特征,然后通过EMD处理,得到包... 工业离心泵故障诊断中常常受到噪声的干扰,针对这一问题,提出一种强噪声条件下基于经验模态分解(empirical mode decomposition,EMD)和自编码器的优选特征方法。首先利用补偿距离评估技术确定出有效的时频特征,然后通过EMD处理,得到包含不同尺度和频率特性的模态分量。通过能量比变异系数确定出有效的分析分量,通过提取出所选分量的有效特征,拼接构造高维的深度特征。最后通过自编码器对深度特征做降维处理,进一步优选特征,得到最终的故障敏感特征,完成特征提取。选用支持向量机作为故障诊断模型,通过工业离心泵多故障数据进行对比试验。结果表明所提方法在信噪比为-5 dB、-7 dB和-10 dB强噪声干扰条件下,准确率较传统时频特征分别提高了6.13%、7.46%、12.00%。该方法有较强的抗噪声的能力,在噪声干扰下能有效提取表征设备状态的敏感特征。 展开更多
关键词 强噪声 离心泵 经验模态分解(emd) 优选特征 敏感特征
在线阅读 下载PDF
基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测 被引量:3
16
作者 余周 姜涛 +2 位作者 范鹏辉 牛超群 陈兵 《长江科学院院报》 CSCD 北大核心 2024年第6期28-35,共8页
针对水位时间序列具有线性与非线性混合、不确定性高等特点带来的预测困难问题,提出了一种基于经验模态分解(EMD)、长短时记忆网络(LSTM)和深度极限学习机(DELM)的EMD-DELM-LSTM组合模型,其中DELM和LSTM采用并联结构预测,并与EMD串联连... 针对水位时间序列具有线性与非线性混合、不确定性高等特点带来的预测困难问题,提出了一种基于经验模态分解(EMD)、长短时记忆网络(LSTM)和深度极限学习机(DELM)的EMD-DELM-LSTM组合模型,其中DELM和LSTM采用并联结构预测,并与EMD串联连接。首先使用EMD将原始信号分解为若干个具有单一特征的本征模态函数(IMFs),再将IMFs分类重组为高、中、低频信号后输入DELM-LSTM并联结构中进行预测并重构。以广州某大学重要湖泊为例验证模型的有效性,结果表明,与EMD-LSTM、EMD-DELM、LSTM、DELM和BiLSTM模型相比,本模型在不同时间尺度下的预测性能均有显著提升,其中40 min时间尺度下的预测性能提升效果最为明显,分别较对比模型提升43.08%、22.92%、45.79%、30.92%和47.31%。可见,本模型对于不同时间尺度的水位预测具有良好的可靠性和稳定性。 展开更多
关键词 水位预测 emd-DELM-LSTM 经验模态分解 多时间尺度分析 人工神经网络
在线阅读 下载PDF
基于EMD-MLP组合模型的用电负荷日前预测 被引量:4
17
作者 刘璐瑶 陈志刚 +2 位作者 沈欣炜 吴劲松 廖霄 《南方能源建设》 2024年第1期143-156,共14页
[目的]用电负荷的精准预测是电力系统运行优化的基础,是电力系统能量管理中不可或缺的组成部分。针对传统数据分解技术与机器学习模型结合预测存在的精准度低、计算量大等问题,提出一种将经验模态分解与多层感知机结合(EMD-MLP)的新方... [目的]用电负荷的精准预测是电力系统运行优化的基础,是电力系统能量管理中不可或缺的组成部分。针对传统数据分解技术与机器学习模型结合预测存在的精准度低、计算量大等问题,提出一种将经验模态分解与多层感知机结合(EMD-MLP)的新方法对用电负荷进行日前预测。[方法]首先基于EMD将原始负荷时间序列信号分解为多个本征模函数(Intrinsic Mode Function,IMF)分量,然后采用极值点划分法将多IMF分量进行重构形成高频和低频两个成分以精简预测对象,最后对重构的新分量分别建模预测,并将它们的预测结果叠加作为用电负荷预测值。[结果]采用澳大利亚电力市场2018年、2019年的实测用电负荷数据进行试验。[结论]将建立的EMD-MLP组合模型与持续性模型、单一MLP模型以及传统EMD组合模型进行外推预测效果的对比,验证了所建模型在提高预测精度上的有效性。此外,所提出的EMD-MLP组合新方法在保证精度的同时简化了模型复杂度,提高了预测效率,可以方便地应用于实际中的用电负荷日前与实时预测。 展开更多
关键词 用电负荷预测 日前预测 经验模态分解 分量重构 emd-MLP
在线阅读 下载PDF
基于改进EMD和GA-BPNN的机器人磨削颤振监测 被引量:1
18
作者 刘伟 刘旺 +3 位作者 曹大虎 葛吉民 万林林 陈加 《振动与冲击》 EI CSCD 北大核心 2024年第9期131-138,174,共9页
由于工业机器人的灵活性,被广泛应用于机器人焊缝磨削任务中。但由于机器人的弱刚性,在焊缝磨削过程中系统容易发生颤振,因此对加工过程中的颤振监测是保证加工质量的基础。针对在加工振动信号处理过程中的模态混叠现象,提出了一种基于... 由于工业机器人的灵活性,被广泛应用于机器人焊缝磨削任务中。但由于机器人的弱刚性,在焊缝磨削过程中系统容易发生颤振,因此对加工过程中的颤振监测是保证加工质量的基础。针对在加工振动信号处理过程中的模态混叠现象,提出了一种基于排列熵算法改进的经验模态分解方法,通过排列熵算法检测振动信号中的异常信号并剔除。通过相关系数法提取相关性最大的固有模态函数的能量熵作为特征值,同时提取方差、峰峰值、均方根和峭度4种时域特征。利用遗传算法优化BP神经网络(back propagation neural network,BPNN)建立颤振辨识模型,最后将提取的5种特征参数作为特征向量代入辨识模型中对加工状态进行监测。试验结果显示,提出的改进经验模态分解算法结合遗传算法优化的BPNN模型能够有效地对机器人焊缝磨削中的颤振进行监测。 展开更多
关键词 机器人磨削 颤振监测 改进经验模态分解 遗传算法 BP神经网络
在线阅读 下载PDF
基于改进EMD-小波包的爆破振动信号降噪方法研究 被引量:2
19
作者 闫鹏 张云鹏 +2 位作者 侯善营 张为为 杨曦 《振动与冲击》 EI CSCD 北大核心 2024年第11期264-271,287,共9页
针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚... 针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚类特性以及小波包的降噪优势,不仅可以消除EMD的模态混叠,也具有良好的降噪效果。研究结果表明:与自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis, CEEMDAN)和EMD方法相比,在模拟信号降噪试验中,改进EMD-小波包方法的信噪比(7.9 dB)最大,均方根误差(2.96)最小。在实测爆破振动信号降噪中,改进EMD-小波包方法降噪后的信号与原始信号相关系数最大为0.91。改进EMD-小波包和CEEMDAN方法的降噪效果相对理想,且改进EMD-小波包方法对10~60 Hz低频信号能量保存效果较好,对60 Hz以上中高频噪声的滤除效果最好。 展开更多
关键词 爆破振动信号 经验模态分解(emd) 核主成分分析(KPCA) K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于CEEMD-SSA-SVM的短期光伏发电功率预测 被引量:5
20
作者 魏鹏飞 石新聪 +4 位作者 朱咏明 何龙 李杨 巨晓敏 王清彬 《水力发电》 CAS 2024年第4期87-94,共8页
针对光伏发电功率随机波动性导致预测难度大这一问题,采用改进的经验模态分解(CEEMD)对原始光伏发电功率数据进行分解,得到不同尺度的模态分量;然后引入麻雀搜索算法(SSA)对支持向量机(SVM)进行优化,建立不同尺度模态分量的预测模型;最... 针对光伏发电功率随机波动性导致预测难度大这一问题,采用改进的经验模态分解(CEEMD)对原始光伏发电功率数据进行分解,得到不同尺度的模态分量;然后引入麻雀搜索算法(SSA)对支持向量机(SVM)进行优化,建立不同尺度模态分量的预测模型;最后将各预测值叠加得到最终的光伏发电功率预测值。仿真结果表明,所提CEEMD-SSA-SVM光伏发电功率预测方法在保证原始光伏发电功率序列经CEEMD处理后具有较小重构误差的前提下,极大地提高了预测精准度。 展开更多
关键词 光伏发电 功率预测 改进的经验模态分解 麻雀搜索算法 支持向量机
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部