期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
1
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
在线阅读 下载PDF
一个基于自组织特征映射网络的混合神经网络结构(英文) 被引量:4
2
作者 戴群 陈松灿 王喆 《软件学报》 EI CSCD 北大核心 2009年第5期1329-1336,共8页
将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严... 将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严重缺陷.提出此集成型网络的动机是,利用BP-SOM良好的知识解释能力和ICBP网络良好的推广性和自适应性构造一个ICBP-SOM模型,它具有良好的知识表示能力和极具竞争力的推广性能.在6个基准数据集上的实验结果验证了这一集成型网络的可行性和有效性. 展开更多
关键词 神经网络 圆型反向传播网络 改进的圆型反向传播网络 自组织特征映射 BP—SOM 分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部