期刊文献+
共找到1,115篇文章
< 1 2 56 >
每页显示 20 50 100
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
1
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
2
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:5
3
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
在线阅读 下载PDF
Hybrid particle swarm optimization for multiobjective resource allocation 被引量:4
4
作者 Yi Yang Li Xiaoxing Gu Chunqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期959-964,共6页
Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the b... Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm. 展开更多
关键词 resource allocation multiobjective optimization improved particle swarm optimization.
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
5
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于改进粒子群算法的光伏逆变器控制参数辨识 被引量:3
6
作者 罗建 孙越 江丽娟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期124-133,共10页
精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW... 精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW光伏电站为实际参照模型,首先根据实际工作情况将逆变器的工作区间划分为3个阶段,利用数学扰动法分别对3个阶段中的待辨识参数划分灵敏度高低等级,并由此提出不同阶段不同灵敏度参数分步辨识策略;其次,分阶段采集实际光伏电站工作数据,对该数据进行分析处理,获得各待辨识参数的初始取值范围,设计同步辨识参数实验作为参照;最后提出改进的混沌遗传粒子群优化算法(chaos genetic algorithm of particle swarm optimization,CGAPSO)作为辨识算法,分步分工作阶段辨识相关参数,通过对比参数的同步辨识结果,验证所提方法的优越性,并将辨识结果代入仿真模型。结果结果表明,低灵敏度参数的同步辨识结果误差远超过可接受范围,而CGAPSO分步辨识出的相关参数误差皆在1.1%以下,精度远高于同步辨识结果。结论基于改进粒子群算法构建的辨识模型输出数据与实际逆变器工作数据契合度高,可准确反映逆变器实际工作特性。 展开更多
关键词 光伏并网逆变器 逆变器控制策略 参数辨识 数学扰动法 改进粒子群优化算法
在线阅读 下载PDF
智能井流量控制系统高温电磁阀结构优化设计 被引量:3
7
作者 郑严 顿志强 +3 位作者 王晓 王龙 钟俊宇 马传钦 《液压与气动》 北大核心 2025年第3期50-60,共11页
井下流量控制系统作为智能完井系统的核心部件,对井下智能开采至关重要,而井下高温电磁阀作为电控液驱流量控制系统的重要元件,对控制系统性能起到关键作用。介绍了电磁阀结构及工作原理,利用有限元仿真建立电磁铁模型,分析了电磁铁静... 井下流量控制系统作为智能完井系统的核心部件,对井下智能开采至关重要,而井下高温电磁阀作为电控液驱流量控制系统的重要元件,对控制系统性能起到关键作用。介绍了电磁阀结构及工作原理,利用有限元仿真建立电磁铁模型,分析了电磁铁静铁芯锥角、静铁芯凸台、线圈位置、隔磁环倾角、隔磁环长度对电磁力特性影响,并进行了电磁-热耦合仿真分析。采用正交试验设计研究影响电磁力结构参数之间的主次关系,并基于响应面法与改进粒子群算法结合的优化思路,对电磁铁结构参数进行优化设计。优化后0 mm处的电磁力提高了16.68%,0.5 mm处电磁力提高了29.62%,1 mm处电磁力提高了31.06%,为电控液驱型流量控制系统设计奠定了理论基础。 展开更多
关键词 智能井 流量控制系统 高温电磁阀 正交试验 改进粒子群算法
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
8
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于改进多目标粒子群算法的码头结构传感器优化布置 被引量:1
9
作者 周鹏飞 张雍 《振动与冲击》 北大核心 2025年第1期243-251,共9页
为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏... 为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏感性和冗余性、损伤识别不适定性以及模态线性独立性的多目标优化函数;改进多目标粒子群算法获取Pareto解集,利用TOPSIS熵权法确定最优传感器布置方案。在某高桩码头试验表明:与有效独立法和有效独立-模态动能法相比,IMOPSO得到的布设方案测点分布更均匀,在灵敏度矩阵条件数、MAC最大非对角元、损伤冗余性指标分别优化了45%、90%、5%以上;多种工况下的损伤位置和程度识别准确率在不同噪声下平均提高5%和7%以上。 展开更多
关键词 码头结构健康监测 传感器优化布置 损伤识别 改进多目标粒子群(IMOPSO)
在线阅读 下载PDF
多学科设计优化在复杂船型开发中的应用
10
作者 章瑾 叶杨 朱婷 《舰船科学技术》 北大核心 2025年第7期59-63,共5页
在复杂船型开发中,多学科设计优化的应用对提升船舶综合性能、降低成本等具有重要意义。本文搭建多学科优化设计框架,明确综合优化目标,兼顾水动力、结构、稳性和经济性等多方面需求,深入分析各学科约束条件,为优化设计奠定基础。运用... 在复杂船型开发中,多学科设计优化的应用对提升船舶综合性能、降低成本等具有重要意义。本文搭建多学科优化设计框架,明确综合优化目标,兼顾水动力、结构、稳性和经济性等多方面需求,深入分析各学科约束条件,为优化设计奠定基础。运用改进粒子群算法,借助动态惯性权重调整、自适应学习因子等策略提升搜索能力,在收敛速度和稳定性上优于传统算法,将其应用于复杂船型多学科优化设计,重点研究船首和螺旋桨的多学科优化设计方案,结果表明多学科设计优化方法能有效提升设计效率。 展开更多
关键词 多学科设计优化 复杂船型 改进粒子群算法 优化目标
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
11
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
12
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
13
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于混沌莱维粒子群算法的机械臂轨迹规划
14
作者 盖荣丽 王康 王晓红 《组合机床与自动化加工技术》 北大核心 2025年第5期101-105,109,共6页
针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索... 针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索能力和跳出局部最优解能力。以六自由度机械臂为研究对象,建立时间优化目标模型,以3-5-3多项式插值方法为基础对其进行轨迹规划。将该算法应用于求解多种测试函数以及机器人时间最优轨迹规划问题,与遗传算法改进的粒子群算法(PSO-GA)、鲸鱼优化算法(WOA)和布谷鸟搜索算法(CS)相比,该算法取得了较好的效果。优化后得到的机械臂位移、速度和加速度曲线平滑、无突变。结果表明,所提出的优化算法能够有效降低轨迹的执行时间。 展开更多
关键词 粒子群算法 Tent混沌映射 莱维飞行 时间最优 轨迹规划
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法
15
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于改进PSO算法的下肢外骨骼控制系统设计
16
作者 凌六一 刘一铭 张奇 《科学技术与工程》 北大核心 2025年第14期5913-5923,共11页
针对样机建立简化的下肢外骨骼模型,应用D-H参数法进行动力学分析,并通过实验测得关节角度后进行拟合作为控制器输入。为了解决机器人的轨迹跟踪问题,利用传统PID控制拥有较好的跟随效果,但存在响应和寻参速度慢等问题;结合粒子群算法... 针对样机建立简化的下肢外骨骼模型,应用D-H参数法进行动力学分析,并通过实验测得关节角度后进行拟合作为控制器输入。为了解决机器人的轨迹跟踪问题,利用传统PID控制拥有较好的跟随效果,但存在响应和寻参速度慢等问题;结合粒子群算法后虽然寻参速度加快,仍出现收敛精度低以及易陷入局部最优解的问题,因此设计了一种基于混沌映射型改进粒子群算法的PID控制。结果表明,改进后随机性增强,寻参速度加快,跟踪误差更小;并采用Simscape将关节角度进行可视化仿真,结合实验多方面验证控制效果。 展开更多
关键词 下肢康复机器人 改进粒子群优化 PID控制 轨迹跟踪 SIMULINK仿真
在线阅读 下载PDF
基于改进Apriori算法的不良驾驶行为关联分析
17
作者 韩锐 于长海 +1 位作者 丁庆国 石朋炜 《现代电子技术》 北大核心 2025年第14期50-56,共7页
不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶... 不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶行为。基于行为数据集,提出一种改进的Apriori关联规则挖掘算法。引入粒子群优化(PSO)算法优化Apriori算法中的支持度与置信度两个重要参数,并使用哈希映射表提高Apriori算法的运行效率。实验结果表明,改进Apriori算法在两种数据集上的运行时间较传统Apriori算法分别提高8.26%、9.27%。关联结果显示,不良驾驶行为并非单独存在,其中急转弯、快速变道、急加速关联性最强,超速行为与急变速次之。该研究能够为驾驶风格量化分析提供参考,可应用于交通事故主动预警系统。 展开更多
关键词 驾驶安全 不良驾驶行为 数据挖掘 关联分析 改进Apriori算法 粒子群优化算法
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
18
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
油田卸水机械臂的设计及其液压控制系统的优化 被引量:2
19
作者 罗明 周建平 +1 位作者 周忠祥 许燕 《机床与液压》 北大核心 2025年第1期194-201,共8页
为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并... 为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并提出一种基于粒子群优化(PSO)算法的模糊PID控制策略。该控制策略引入非线性递减权重,对粒子群算法进行改进,采用改进后的PSO对量化因子和比例因子进行更新迭代,实现对模糊PID参数的优化。采用阶跃信号和正弦信号作为激励,通过上升时间、超调量和平均误差等指标来评价该算法的控制效果。最后,制作油田卸水机械臂样机和控制系统进行性能测试。实验结果表明:使用基于PSO的模糊PID控制时,机械臂调整迅速、运动平稳且定位准确度高,能够满足油田卸水的使用需求。 展开更多
关键词 油田卸水机械臂 液压系统 基于PSO的模糊PID 改进粒子群优化算法
在线阅读 下载PDF
ICPSO算法及其在经济负荷分配中的应用 被引量:6
20
作者 邹恩 辛建涛 +1 位作者 方仕勇 林锦钱 《电力系统及其自动化学报》 CSCD 北大核心 2012年第4期19-24,共6页
提出一种改进的混沌粒子群优化ICPSO(improved chaotic particle swarm optimization)算法,用于求解非线性、非凸、不连续等复杂约束条件的电力系统经济负荷分配。通过修正粒子群迭代的行动策略,并引入Tent混沌映射加强部分粒子的全局... 提出一种改进的混沌粒子群优化ICPSO(improved chaotic particle swarm optimization)算法,用于求解非线性、非凸、不连续等复杂约束条件的电力系统经济负荷分配。通过修正粒子群迭代的行动策略,并引入Tent混沌映射加强部分粒子的全局搜索能力,可以提高优化算法的全局搜索性能。最后将该算法应用于3机6母线的电力系统经济负荷分配中,在计及阀点效应的情况下,分别以考虑网损和忽略网损为例进行仿真。仿真结果表明,该算法有较快的收敛速度和较强的全局搜索能力,验证了算法的有效性和优越性。 展开更多
关键词 混沌映射 改进的混沌粒子群优化 算法改进 电力系统 经济负荷分配
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部