期刊文献+
共找到792篇文章
< 1 2 40 >
每页显示 20 50 100
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
1
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
在线阅读 下载PDF
Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network 被引量:6
2
作者 孙玉山 李岳明 +2 位作者 张国成 张英浩 吴海波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期808-816,共9页
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr... Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective. 展开更多
关键词 autonomous underwater vehicle fault diagnosis THRUSTER improved Elman neural network
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
3
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(RBF)neural network
在线阅读 下载PDF
Damage assessment of aircraft wing subjected to blast wave with finite element method and artificial neural network tool 被引量:1
4
作者 Meng-tao Zhang Yang Pei +1 位作者 Xin Yao Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期203-219,共17页
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ... Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures. 展开更多
关键词 VULNERABILITY Wing structural damage Blast wave Battle damage assessment back-propagation artificial neural network
在线阅读 下载PDF
3D laser scanning strategy based on cascaded deep neural network
5
作者 Xiao-bin Xu Ming-hui Zhao +4 位作者 Jian Yang Yi-yang Xiong Feng-lin Pang Zhi-ying Tan Min-zhou Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1727-1739,共13页
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito... A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target. 展开更多
关键词 Scanning strategy Cascaded deep neural network improved cross entropy loss function Pitching range and speed model Integral separate speed PID
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:4
6
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
履带起重机桁架臂最大静力响应预测
7
作者 李金平 张宇 +4 位作者 田一 顾海荣 叶敏 张大庆 徐信芯 《中南大学学报(自然科学版)》 北大核心 2025年第7期2731-2740,共10页
为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最... 为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最大静力响应的参数化模型,获取静力响应训练样本;其次,使用Tent混沌映射和自适应变异方法改进原始COOT算法,提高其优化能力,得到了改进的COOT算法(ICOOT);最后,确定了BP神经网络模型的拓扑结构,利用ICOOT算法优化BP神经网络中的权值和阈值,建立桁架臂静力分析时输入参数与输出响应之间的代理模型ICOOT-BP。研究结果表明:某型履带起重机桁架臂在多种工况下,ICOOT-BP模型能够快速预测桁架臂的最大静力响应,预测结果与有限元分析结果具有高度一致性,位移和应力相对误差绝对值均小于4%,且在预测精度与训练效率方面均显著高于所对比的其他预测模型。所提ICOOT-BP模型极大地提高了履带起重机桁架臂的最大静力响应分析效率,可为桁架臂力学分析与结构优化设计提供准确的结构分析代理模型。 展开更多
关键词 履带起重机 桁架臂 静力响应预测 BP神经网络 改进的COOT算法
在线阅读 下载PDF
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
8
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测
9
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
10
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型
11
作者 王彦海 李恩阳 +3 位作者 苗红璞 石习双 李书炀 周冬阳 《燕山大学学报》 北大核心 2025年第3期207-218,共12页
输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singe... 输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singer混沌映射与可变螺旋搜索策略对蜣螂优化算法进行优化,然后利用改进的蜣螂优化算法对BP神经网络的权值和阈值进行优化,得到覆冰状态下输电塔应力与位移预测模型;其次,采用有限元仿真计算,得到不同工况下输电塔的状态响应;最后,结合预测模型与仿真结果得到覆冰状态输电塔关键部位应力和塔头位移的预测值。结果表明:文中提出的IDBO-BP较DBO-BP绝对平均误差下降了62.9%,平均相对误差下降了58.1%,均方根误差下降了60.2%,为覆冰状态下的输电塔自身杆件状态的安全性预测提供参考。 展开更多
关键词 输电塔 BP神经网络 覆冰 改进蜣螂算法
在线阅读 下载PDF
基于改进布谷鸟搜索算法的压气机特性曲线预测
12
作者 王巍 李哲 +3 位作者 刘祎阳 姜孝谟 刘朋 李士龙 《推进技术》 北大核心 2025年第1期219-227,共9页
为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化... 为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化BP(CS-BP)、径向基函数神经网络(RBF)、极限学习机(ELM)、自优化支持向量机(MSVM)和ICS-BP模型的预测结果。分析显示,ICS-BP模型整体预测结果的相对误差最小,普遍在±1%以内,评价指标展现出最高的精度和鲁棒性,预测结果具有最佳的泛化能力,且优化后的模型解决BP易陷入局部最优的问题;ELM和RBF模型运行速度较快的情况下依然具有良好的整体预测精度,但对于边界工况点预测效果欠佳,适用于对时间成本要求高的场景。针对7F重型燃气轮机和NASA74A型号压气机特性曲线,通过ICS-BP模型预测的压比特性精度较高,整体预测结果的平均绝对百分误差分别为1.129%和0.590%,进一步验证了其在特性预测方面的优势。 展开更多
关键词 压气机特性 曲线预测 改进布谷鸟搜索算法 神经网络 泛化能力
在线阅读 下载PDF
基于卷积神经网络的水稻叶片病害检测与识别研究进展
13
作者 朱周华 周怡纳 王斌 《中国农机化学报》 北大核心 2025年第10期176-182,191,共8页
我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶... 我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶片病害检测效率低并且准确率不高,但随着深度学习不断发展,基于卷积神经网络的病害检测与识别已成为研究人员关注的重要课题。针对近年来使用的模型算法总结归纳数据预处理与数据增强、框架结构改进和迁移学习等改进策略,对比分析这些算法的性能及其局限性,发现多数模型存在准确率与模型参数量性能不平衡的问题。从数据集构建、模型性能平衡和泛化能力等方面展望未来的研究趋势,为以后高效检测与识别水稻叶片病害提供参考。 展开更多
关键词 水稻叶片 病害检测与识别 卷积神经网络 目标检测 分类识别 改进策略
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
14
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测
15
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于相似日与ISC-BiLSTM的短期光伏功率预测方法 被引量:1
16
作者 杨轶航 韩璐 +3 位作者 史华勃 邓鑫隆 陈梓桐 孙如田 《太阳能学报》 北大核心 2025年第1期676-685,共10页
针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首... 针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首先通过相关性计算,筛选出影响光伏功率的主要气象因子;再使用模糊C均值聚类(FCM)方法对存在相似天气特征的相似日进行聚类;然后通过加入SE的CNN对主要气象参数与历史功率的时空特征进行充分提取;接着利用BiLSTM对数据序列间的依赖关系进行捕捉;最后通过ISSA对模型的超参数进行寻优,并选择超参数最优的模型进行功率预测。对比实验与仿真结果表明,该方法预测误差较低,能实现日前分钟级短期光伏功率的准确预测。 展开更多
关键词 光伏发电 预测 神经网络 注意力机制 改进麻雀算法 模糊聚类
在线阅读 下载PDF
基于改进遗传算法优化LSTM的营养液温度预测模型 被引量:1
17
作者 刘艺梦 王会强 +3 位作者 丁小明 李飞 孙玉林 孙广军 《中国农机化学报》 北大核心 2025年第6期91-97,共7页
准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络... 准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络(LSTM)模型参数的营养液温度预测方法,通过引入正弦函数,对遗传算法中的固定交叉和变异概率进行优化。使用皮尔逊相关分析法获取相关性较强的特征。同时构造特征与时间步长的矩阵,将其输入到网络中进行温度预测。预测结果表明,在预测时间为20~60 min时,模型决定系数为0.954~0.985,均方根误差为0.183℃~0.365℃,平均绝对误差为0.165℃~0.311℃。并在不同清晰度指数K_(T)下进行验证。结果表明,在0.5>K_(T)≥0.2(多云)时,模型营养液温度预测效果最好,且在其他K_(T)下模型可以达到生产所需预测精度要求,为根区精准高效控温提供重要依据。 展开更多
关键词 营养液膜技术 改进遗传算法 LSTM神经网络 皮尔逊相关分析 营养液温度预测
在线阅读 下载PDF
小样本条件下车削加工工艺碳排放多目标预测研究 被引量:1
18
作者 杨历夏 王宇钢 +2 位作者 唐祎晖 张阴硕 穆俊珍 《机床与液压》 北大核心 2025年第1期73-79,共7页
针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向... 针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向传播神经网络构建以碳排放和加工时间为目标的预测模型,并通过改进麻雀搜索算法对反向传播神经网络的参数寻优,最终得到加工工艺多目标预测模型。最后,通过加工实验验证在小样本条件下该方法的有效性。结果表明:基于ASSA-BP的模型能以较高精度预测车削加工工艺的碳排放量和加工时间;与传统BP神经网络方法相比,文中方法的碳排放量和加工时间的预测精度均得到有效提升。 展开更多
关键词 小样本条件 车削加工工艺 碳排放多目标预测 反向传播神经网络 改进麻雀搜索算法
在线阅读 下载PDF
孤网模式下水电机组自适应最优PID控制器设计
19
作者 陈金保 任刚 +3 位作者 徐龙 胡文庆 郑阳 肖志怀 《控制理论与应用》 北大核心 2025年第1期22-32,共11页
为确保孤网模式下频率稳定性,水电站通常采用参数较小的固定PID(F-PID)控制,导致调节速度慢,难以实现全工况最优控制.针对这一问题,设计了一种基于改进灰狼优化算法(IGWO)和反向传播神经网络(BPNN)的水轮机调节系统(HTRS)自适应变PID控... 为确保孤网模式下频率稳定性,水电站通常采用参数较小的固定PID(F-PID)控制,导致调节速度慢,难以实现全工况最优控制.针对这一问题,设计了一种基于改进灰狼优化算法(IGWO)和反向传播神经网络(BPNN)的水轮机调节系统(HTRS)自适应变PID控制器(V-PID),以在全工况下获得最优调节效果.首先,搭建高精度的HTRS仿真平台,并按水头和导叶开度变化范围划分工况.然后基于Hopf分岔理论确定各工况下PID参数约束条件及最大值.进一步,采用基于PID参数最大值数据集、综合ITAE指标和非线性收敛因子的IGWO计算出各工况下最优PID参数,并以最优PID参数作为BPNN样本数据,通过训练得到自适应V-PID控制器神经网络模型.最后,以某实际水电站为例,验证了V-PID控制器效果.仿真试验表明:基于V-PID控制器的非线性HTRS模型可根据工况变化在线自动调整PID参数,以结构简单、易实现为前提,实现了孤网模式下水电机组全工况最优控制. 展开更多
关键词 水电机组 改进灰狼优化算法 自适应控制 HOPF分岔 神经网络 PID控制器
在线阅读 下载PDF
铝箔车间能源管控及优化决策系统设计与实现
20
作者 赵家伟 袁逸萍 +1 位作者 朱广贺 祁雷 《机械设计与制造》 北大核心 2025年第7期263-266,271,共5页
针对工业互联网环境下绿色制造和能源资源精细化管控的需求,以及传统车间能耗管控数字化、信息化、智慧化车间转型的现状,开展轧制工艺与能耗管控优化相关研究,构建车间可视化工艺能耗管控及化决策系统平台。从轧制工艺参数数据流出发,... 针对工业互联网环境下绿色制造和能源资源精细化管控的需求,以及传统车间能耗管控数字化、信息化、智慧化车间转型的现状,开展轧制工艺与能耗管控优化相关研究,构建车间可视化工艺能耗管控及化决策系统平台。从轧制工艺参数数据流出发,以对应用能设备能耗参数为主要实时监测对象,采用数据流集成技术、BP神经网络和改进粒子群算法APSO等技术以最小能耗为目标进行迭代寻优获取最优轧制工艺参数,以“数据-分析-优化-决策”为主线进行可视化系统的搭建。最后以铝箔轧制车间为对象,实现了对各工序能耗统计管理和决策优化分析。 展开更多
关键词 轧制工艺 优化决策 BP神经网络 改进粒子群算法
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部