期刊文献+
共找到2,545篇文章
< 1 2 128 >
每页显示 20 50 100
Comprehensive multivariate grey incidence degree based on principal component analysis 被引量:6
1
作者 Ke Zhang Yintao Zhang Pinpin Qu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期840-847,共8页
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip... To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models. 展开更多
关键词 grey system multivariate grey incidence analysis behavioral matrix principal component analysis (pca).
在线阅读 下载PDF
Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis 被引量:23
2
作者 ZHANG Ying-Wei ZHOU Hong QIN S. Joe 《自动化学报》 EI CSCD 北大核心 2010年第4期593-597,共5页
关键词 分散系统 MBKpca SPF pca
在线阅读 下载PDF
Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis 被引量:2
3
作者 ZHOU Kai LI Daojing +7 位作者 CUI Anjing HAN Dong TIAN He YU Haifeng DU Jianbo LIU Lei ZHU Yu ZHANG Running 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1143-1151,共9页
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third... The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period. 展开更多
关键词 principal component analysis(pca) spaceborne synthetic aperture radar(SAR) sparse flight sparse spectrum by interferometry 3-D imaging
在线阅读 下载PDF
The Formation Mechanism of Hydrogeochemical Features in a Karst System During Storm Events as Revealed by Principal Component Analysis
4
作者 Pingheng Yang Daoxian Yuan Kuang Yinglun,Wenhao Yuan,Peng Jia,Qiufang He 1.School of Geographical Sciences,Southwest University,Chongqing 400715,China. 2.Laboratory of Geochemistry and Isotope,Southwest University,Chongqing 400715,China 3.The Karst Dynamics Laboratory,Ministry of Land and Resources,Institute of Karst Geology,Chinese Academy of Geological Sciences,Guilin 541004,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期33-34,共2页
The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeo... The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeochemical parameters,including discharge,specific conductance,pH,water tempera- 展开更多
关键词 RAINFALL principal component analysis(pca) soil EROSION AGRICULTURAL activities KARST hydrogeochemical feature Qingmuguan
在线阅读 下载PDF
Independent component analysis approach for fault diagnosis of condenser system in thermal power plant 被引量:6
5
作者 Ajami Ali Daneshvar Mahdi 《Journal of Central South University》 SCIE EI CAS 2014年第1期242-251,共10页
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t... A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants. 展开更多
关键词 CONDENSER fault detection and diagnosis independent component analysis independent component analysis (ICA) principal component analysis (pca thermal power plant
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:1
6
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 BP神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
在线阅读 下载PDF
Equipment damage measurement method of wartime based on FCE-PCA-RF
7
作者 LI Mingyu GAO Lu +2 位作者 XU Hongwei LI Kai HUANG Yisong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期707-719,共13页
As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the pl... As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation(FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85%of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime. 展开更多
关键词 WARTIME equipment damage fuzzy comprehensive evaluation(FCE) principal component analysis(pca) artificial neural network(ANN) random forest(RF)
在线阅读 下载PDF
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区
8
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 SVD pca 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
基于改进型PCA全极化雷达回波信号融合的动目标检测方法
9
作者 庞岳 岳富占 +4 位作者 夏正欢 张闯 王洪强 高文宁 张瑶 《现代雷达》 北大核心 2025年第2期126-133,共8页
树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检... 树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检测方法。该方法首先在杂波背景下提取动目标信号,并利用改进型PCA进行全极化雷达回波信号融合;然后分别在时间维和距离维进行目标检测,并通过非相参积累方法重检测,有效排除目标混叠和虚警干扰,从而检测出目标并提取了其关注区域;最后通过自主研发的L波段全极化雷达系统,对该方法进行了实验验证。实验结果表明:该方法对于树林遮蔽环境下动目标具有很好的检测效果,显著提升了L波段全极化雷达在树林遮蔽条件下的目标检测性能。 展开更多
关键词 L波段全极化雷达 主成分分析 数据融合 树林遮蔽场景 目标检测
在线阅读 下载PDF
基于PCA-LM-NARX的禽舍室温预测模型
10
作者 钟宁帆 高鲁宁 +1 位作者 贺凯迅 李娟 《农业工程学报》 北大核心 2025年第2期261-270,共10页
采用隧道式通风系统的禽舍室内温度容易受自然环境变化以及家禽日龄影响,难以在线准确预测。为了准确预测禽舍室内温度,该研究结合主成分分析法(principal component analysis,PCA)、莱温伯格-马夸特算法(LevenbergMarquardt method,LM... 采用隧道式通风系统的禽舍室内温度容易受自然环境变化以及家禽日龄影响,难以在线准确预测。为了准确预测禽舍室内温度,该研究结合主成分分析法(principal component analysis,PCA)、莱温伯格-马夸特算法(LevenbergMarquardt method,LM)和带外部输入的非线性自回归模型(nonlinear auto-regressive model with exogenous inputs,NARX),提出了一种PCA-LM-NARX的方法用于在线构建禽舍室内温度预测模型。该方法利用主成分分析提取影响禽舍室内温度的关键环境变量,构建基于关键环境变量的NARX神经网络室温预测模型,并利用LM算法对神经网络参数进行优化计算。考虑到禽舍室温变化的滞后特性,PCA-LM-NARX方法利用贝叶斯信息准则设计NARX神经网络的最优延迟阶数。建模过程中PCA-LM-NARX方法采用移动窗法在线更新室温预测模型参数,以适应不同日龄的家禽和自然环境的变化。试验结果显示,基于PCA-LM-NARX方法构建的室温预测模型预测未来5、15、30 min温度值的均方误差大小分别为0.022 0、0.047 2、0.077 9℃^(2);在i5-12500H型CPU上运行建模程序,平均建模用时为0.332 1 s。研究结果表明,PCA-LM-NARX方法可以构建高精度禽舍室温预测模型,并实现模型参数的快速在线更新。 展开更多
关键词 温度 预测模型 禽舍 隧道式通风系统 NARX神经网络 主成分分析法
在线阅读 下载PDF
基于PCA-G1-ET的露天矿采场滑坡预警
11
作者 袁利伟 普思伟 +2 位作者 钟阳 易恒 李素敏 《工矿自动化》 北大核心 2025年第7期83-89,104,共8页
露天矿采场滑坡的发生受地质条件、气象条件及人为开采活动等多因素影响,然而现有研究侧重于少数滑坡主导诱因下的滑坡预警,没有考虑爆破震动、开挖卸荷、岩体结构等复杂动态因素,面对监测数据维度高的场景,现有预警方法的普适性存在明... 露天矿采场滑坡的发生受地质条件、气象条件及人为开采活动等多因素影响,然而现有研究侧重于少数滑坡主导诱因下的滑坡预警,没有考虑爆破震动、开挖卸荷、岩体结构等复杂动态因素,面对监测数据维度高的场景,现有预警方法的普适性存在明显不足。针对上述问题,提出了一种融合主成分分析(PCA)、G1序关系分析法(G1)与可拓理论(ET)的露天矿采场滑坡预警方法。首先,选取月位移量、内摩擦角、黏聚力、有效降雨量、含水率、开采边坡角、结构面倾角差及开采扰动速率作为预警指标,将露天矿采场滑坡预警等级分为蓝色(低风险)、黄色(一般风险)、橙色(较高风险)、红色(极高风险)4级;其次,采用PCA对指标对应的监测数据进行降维,提取主成分信息并确定指标综合重要性排序;然后,通过G1法确定相邻指标的重要性程度比值,从而计算预警指标权重;最后,结合ET构建物元模型,通过经典域、节域物元和待评价物元计算单指标关联度,并加权得到综合关联度,依据最大关联度原则判定预警等级。应用结果表明,通过该方法计算得到的露天矿采场滑坡预警等级为蓝色,与边坡实际状况相符。 展开更多
关键词 露天矿采场滑坡 滑坡预警 主成分分析 G1序关系分析法 可拓理论
在线阅读 下载PDF
PCA与叙事设计的传统工艺文创产品设计研究
12
作者 刘钊 《家具与室内装饰》 北大核心 2025年第7期84-89,共6页
研究提出PCA与叙事设计双轨驱动的方法,构建了传统工艺文创产品设计的创新框架。通过PCA的量化解析和叙事设计的文化转译,结合形态重构、色彩叙事及交互赋能的三元策略,系统性地实现了传统工艺文化基因的“可量化解析-可感知转译-可场... 研究提出PCA与叙事设计双轨驱动的方法,构建了传统工艺文创产品设计的创新框架。通过PCA的量化解析和叙事设计的文化转译,结合形态重构、色彩叙事及交互赋能的三元策略,系统性地实现了传统工艺文化基因的“可量化解析-可感知转译-可场景化落地”。该方法在保留文化保真度的同时,显著提升了产品的现代适应性,并为高熵值符号提出了分众转化路径。研究以淮阳泥泥狗为实证对象,验证了框架的有效性,为传统工艺文创设计提供了标准化参考,并为非遗现代化创新提供了科学与人文相结合的新思路。 展开更多
关键词 主成分分析(pca) 叙事设计 传统工艺 文创设计 现代化创新
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
13
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(pca) 灰狼优化(GWO)算法 模型堆叠
在线阅读 下载PDF
基于PCA−Transformer的工作面瓦斯浓度预测算法研究
14
作者 杨建 舒龙勇 +2 位作者 张书林 秦凯 崔聪 《工矿自动化》 北大核心 2025年第5期1-7,共7页
针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据... 针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据进行数据清洗,采用最小−最大特征缩放标准化公式对清洗后的数据进行归一化操作。然后,利用PCA对7种影响工作面瓦斯浓度的因素(上隅角瓦斯浓度、回风流瓦斯浓度、氧气浓度、一氧化碳浓度、温度、纯流量、风速)进行降维处理,有效剔除与工作面浓度相关性较低的影响因素。最后,将处理后的训练集输入到Transformer模型,通过编码器、解码器提取瓦斯浓度内在的变化规律和特征。以某高瓦斯矿井224工作面监测数据为样本,利用PCA−Transformer预测模型与长短时记忆神经网络(LSTM)、PCA−LSTM及Transformer等预测模型进行对比分析,结果表明:①PCA−Transformer模型的平均绝对误差为0.0203,均方误差为0.0472,运行时间为86 s,能够满足煤矿生产对瓦斯浓度预测的精度与时效要求。②相较于LSTM,PCA−LSTM,Transformer等预测模型,PCA−Transformer预测模型能够更好地拟合瓦斯浓度变化趋势,有效识别波峰、波谷序列特征,计算耗时最少,验证了PCA−Transformer预测模型的有效性。 展开更多
关键词 工作面瓦斯浓度预测 瓦斯时序数据 主成分分析 TRANSFORMER 降维处理
在线阅读 下载PDF
基于KPCA-ISSA-SVM的控制图模式识别
15
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于KPCA和HC的IPSO-LSTM光伏出力预测模型研究
16
作者 徐昌 许野 +3 位作者 王晓晖 孟亦康 秦宇 李薇 《太阳能学报》 北大核心 2025年第5期362-374,共13页
为提升光伏发电功率的预测精度,构建一套融合核主成分分析法(KPCA)、层次聚类(HC)算法、改进粒子群算法(IPSO)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用KPCA方法对影响光伏出力的气象因素进行降维和生成主成分因子的... 为提升光伏发电功率的预测精度,构建一套融合核主成分分析法(KPCA)、层次聚类(HC)算法、改进粒子群算法(IPSO)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用KPCA方法对影响光伏出力的气象因素进行降维和生成主成分因子的基础上,联合使用HC算法和综合相似距离法挑选出与待预测日气象要素匹配度较高且内部耦合性强的历史日样本集,并运用IPSO优化生成LSTM神经网络的最优超参数组合,最终实现云南某光伏电站发电量的精准预测。对比其他模型,所提组合预测方法在不同天气类型下均能实现较好的预测效果,具有广阔的应用前景。 展开更多
关键词 核主成分分析 光伏出力预测 改进粒子群算法 超参数优化 综合相似距离
在线阅读 下载PDF
Rapid optimal control law generation: an MoE based method
17
作者 ZHANG Tengfei SU Hua +2 位作者 GONG Chunlin YANG Sizhi BAI Shaobo 《Journal of Systems Engineering and Electronics》 2025年第1期280-291,共12页
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target... To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement. 展开更多
关键词 optimal control mixture of experts(MoE) K-MEANS Kriging model neural network classification principal component analysis(pca)
在线阅读 下载PDF
基于PCA-IPSO-LSSVM的航材备件需求预测模型
18
作者 许浩 田才艳 毛瑞柯 《科学技术与工程》 北大核心 2025年第9期3938-3944,共7页
为解决航材备件需求预测中,因航材消耗影响因素多,样本数据量少从而造成预测效果差等问题。提出一种基于主成分分析(principal component analysis,PCA)与改进粒子群算法(improved particle swarm optimization,IPSO)及最小二乘支持向量... 为解决航材备件需求预测中,因航材消耗影响因素多,样本数据量少从而造成预测效果差等问题。提出一种基于主成分分析(principal component analysis,PCA)与改进粒子群算法(improved particle swarm optimization,IPSO)及最小二乘支持向量机(least square support vector machine,LSSVM)的航材备件需求预测模型,首先利用主成分分析法筛选出航材备件主要影响因素,然后使用改进粒子群算法优化最小二乘支持向量机参数组合,最后使用筛选结果及优化参数组合完成PCA-IPSO-LSSVM航材备件需求预测模型训练。与其他4个预测模型相比,PCA-IPSO-LSSVM模型预测精度最高,测试集的均方根误差(root mean squared error,RMSE)和平均相对误差(mean relative error,MRE)分别为3.24和4.23%,表明模型具有较好的预测精度和拟合效果。 展开更多
关键词 航材需求预测 主成分分析 改进粒子群算法 最小二乘支持向量机
在线阅读 下载PDF
基于RS-PCA-SVM的建筑项目安全预测模型 被引量:1
19
作者 李永清 马亚冰 凤亚红 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1243-1247,1261,共6页
为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal co... 为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal component analysis,PCA)法进行降维处理,除去贡献率较低的主成分,将剩余主成分作为支持向量机(support vector machine,SVM)的输入变量,并选择自适应权重粒子群优化算法(particle swarm optimization,PSO)优化SVM的参数,避免参数选择的盲目性。结果表明:该模型的平均预测准确率为93.78%,相比传统方法预测精度高、计算速度快。 展开更多
关键词 属性约简 主成分分析(pca)法 支持向量机(SVM) 预测模型
在线阅读 下载PDF
农机合作社绩效评价方法及应用——基于6D-BSC和改进PCA、VIKOR方法
20
作者 乔金友 孟双凤 +2 位作者 洪魁 郭翔宇 陈海涛 《中国农机化学报》 北大核心 2024年第12期297-304,共8页
农机合作社作为新型农业经营主体,科学客观评价其发展的绩效水平对农机合作社的健康发展、促进乡村振兴具有重要意义。结合新阶段农机合作社发展现状、特点及评价需求,创建基于六维平衡计分卡(6D-BSC)的绩效评价指标体系设计新方法,并... 农机合作社作为新型农业经营主体,科学客观评价其发展的绩效水平对农机合作社的健康发展、促进乡村振兴具有重要意义。结合新阶段农机合作社发展现状、特点及评价需求,创建基于六维平衡计分卡(6D-BSC)的绩效评价指标体系设计新方法,并依其设计涵盖经营规模、学习与成长、技术效果、经济效果、绿色发展和受益群体六个方面的评价指标体系;创建基于主成分分析方法(PCA)的指标权重计算方法并依其确定各指标权重值;改进基于模糊多准则(VIKOR)方法的绩效评价准则。三种方法有机结合使评价指标体系建立更加合理,评价结果更加准确。以黑龙江省14个地市(县)的农机合作社为研究对象进行实证研究,评价结果显示,农机合作社总体绩效水平可以划分为六个层次,其中齐齐哈尔市农机合作社总体绩效水平最高处于第一层次,绥化市农机合作社运营效果突出处于第二层次,哈尔滨市、黑河市农机合作社总体绩效水平较高处于第三层次。 展开更多
关键词 农机合作社 绩效评价 六维平衡计分卡 主成分分析法 模糊多准则方法
在线阅读 下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部