Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material...Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.展开更多
A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribolo...A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the展开更多
Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and ...Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.展开更多
During the operation of power transformer,its oil-paper insulation is continuously subjected to various stresses,c.g.,the thermal,electrical,mechanical,and chemical stresses,which cause insulation aging gradually.It h...During the operation of power transformer,its oil-paper insulation is continuously subjected to various stresses,c.g.,the thermal,electrical,mechanical,and chemical stresses,which cause insulation aging gradually.It has been considered that the combined thermal and electrical stresses are the most important and unavoidable factors that induce insulation materials aging.In this work,accelerated aging experiments of oil-impregnated pressboards under combined thermal(130℃) and electrical stresses(4 kV/mm) are performed,while the aging experiments under single thermal stress are also carried out at the corresponding temperature(130℃).The electrical and physic-chemical properties of oil,including dielectric losses factor tanδ,resistivity,acid value and pH value etc.,are measured during the aging process.Dissolved gasses in oil and polymerization degree of cellulose are also measured.The relationship between these properties of oil-paper insulation and aging time is investigated.The results show that dissolved gases in oil,resistivity,tanδof oil under combined thermal and electrical stresses are obviously different from that tinder thermal stress during aging process while some other properties show similar changing trend.For cellulose, compared with the single thermal aging results,it even shows a slower degradation rate in the presence of electrical stress.展开更多
A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can eas...A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.展开更多
The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated....The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated.The results suggest that the surface ofhydrated titania is amphoteric,and has the function of a cationic exchanger,its ion ex-change properties arc dependent on the pH of the impregnating solutions.The higher theconcentration of metal ions in the impregnating solution and the more polar thc solvent,thehigher the loading on the support material having thc higher degree of crystallinity and alarger surface area without any pretreatments such as dehydration and calcination.展开更多
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
基金supported by Shanxi Provincial Key Research and Development Project(202102090301026)Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2023024)。
文摘Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.
基金Project(2007CB607605) supported by the National Basic Research Program of China
文摘A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the
文摘Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.
基金Supported by National High Technology Research and Development Program of China(2007AA04Z411)National Basic Research Program of China(2009CB724505-1)Open Fund of State Key Laboratory of Power Transmission Equipment & System Security and New Technology(2007DA10512709405)
文摘During the operation of power transformer,its oil-paper insulation is continuously subjected to various stresses,c.g.,the thermal,electrical,mechanical,and chemical stresses,which cause insulation aging gradually.It has been considered that the combined thermal and electrical stresses are the most important and unavoidable factors that induce insulation materials aging.In this work,accelerated aging experiments of oil-impregnated pressboards under combined thermal(130℃) and electrical stresses(4 kV/mm) are performed,while the aging experiments under single thermal stress are also carried out at the corresponding temperature(130℃).The electrical and physic-chemical properties of oil,including dielectric losses factor tanδ,resistivity,acid value and pH value etc.,are measured during the aging process.Dissolved gasses in oil and polymerization degree of cellulose are also measured.The relationship between these properties of oil-paper insulation and aging time is investigated.The results show that dissolved gases in oil,resistivity,tanδof oil under combined thermal and electrical stresses are obviously different from that tinder thermal stress during aging process while some other properties show similar changing trend.For cellulose, compared with the single thermal aging results,it even shows a slower degradation rate in the presence of electrical stress.
基金Project(51074180)supported by the National Natural Science Foundation of China
文摘A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.
文摘The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated.The results suggest that the surface ofhydrated titania is amphoteric,and has the function of a cationic exchanger,its ion ex-change properties arc dependent on the pH of the impregnating solutions.The higher theconcentration of metal ions in the impregnating solution and the more polar thc solvent,thehigher the loading on the support material having thc higher degree of crystallinity and alarger surface area without any pretreatments such as dehydration and calcination.