A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich...A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.展开更多
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im...Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.展开更多
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the...In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.展开更多
Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio...Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance m...The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.展开更多
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ...An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.展开更多
The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex ...The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex energy function form. At the same time, the parameters of LIF are hard to be chosen for better per- formance. A global minimization of the adaptive LIF energy model is proposed. The regularized length term which constrains the zero level set is introduced to improve the accuracy of the bound- aries, and a global minimization of the active contour model is presented, in addition, based on the statistical information of the intensity histogram, the standard deviation σ with respect to the truncated Gaussian window is automatically computed according to images. Consequently, the proposed method improves the performance and adaptivity to deal with the intensity inhomo- geneities. Experimental results for synthetic and real images show desirable performance and efficiency of the proposed method.展开更多
Due to the frequency of occlusion, cluttering and lowcontrast edges, gray intensity based active contour models oftenfail to segment meaningful objects. Prior shape information is usuallyutilized to segment desirable ...Due to the frequency of occlusion, cluttering and lowcontrast edges, gray intensity based active contour models oftenfail to segment meaningful objects. Prior shape information is usuallyutilized to segment desirable objects. A parametric shape priormodel is proposed. Firstly, principal component analysis is employedto train object shape and transformation is added to shaperepresentation. Then the energy function is constructed througha combination of shape prior energy, gray intensity energy andshape constraint energy of the kernel density function. The objectboundary extraction process is converted into the parameters solvingprocess of object shape. Besides, two new shape prior energyfunctions are defined when desirable objects are occluded by otherobjects or some parts of them are missing. Finally, an alternatingdecent iteration solving scheme is proposed for numerical implementation.Experiments on synthetic and real images demonstratethe robustness and accuracy of the proposed method.展开更多
A variational inhomogeneous image segmentation model based on fuzzy membership functions and Retinex theory is proposed by introducing the fuzzy membership function.The existence of the solution of the proposed model ...A variational inhomogeneous image segmentation model based on fuzzy membership functions and Retinex theory is proposed by introducing the fuzzy membership function.The existence of the solution of the proposed model is proved theoretically.A valid algorithm is designed to make numerical solution of the model under the framework of alternating minimization.The last experimental results show that the model can make segmentation of the real image with intensity inhomogeneity effectively.展开更多
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg...A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift ...An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust.展开更多
In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution....In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.Within this research,there is no exact template of the object;instead only several samples are given.The proposed method,called the parametric distribution prior model,extends our previous model by adding the training procedure to learn the prior distribution of the objects.Then this paper establishes the energy function of the active contour model(ACM)with consideration of this parametric form of prior distribution.Therefore,during the process of segmenting,the template can update itself while the contour evolves.Experiments are performed on the airplane data set.Experimental results demonstrate the potential of the proposed method that with the information of prior distribution,the segmentation effect and speed can be both improved efficaciously.展开更多
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ...The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.展开更多
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap...Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.展开更多
基金Projects(6177021519,61503373)supported by National Natural Science Foundation of ChinaProject(N161705001)supported by Fundamental Research Funds for the Central University,China
文摘A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6087403160740430664)
文摘Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.
基金supported by the China Postdoctoral Science Foundation(20100471451)the Science and Technology Foundation of State Key Laboratory of Underwater Measurement&Control Technology(9140C2603051003)
文摘In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.
基金This project was supported by the National Natural Foundation of China (60404022) and the Foundation of Department ofEducation of Hebei Province (2002209).
文摘Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
基金supported by the National Natural Science Foundationof China(61272119)
文摘The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.
基金supported by the National Natural Science Foundation of China(61073106)the Aerospace Science and Technology Innovation Fund(CASC201105)
文摘An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.
基金supported by the National Natural Science Foundation of China(6100317061372142+2 种基金61103121)the Fundamental Research Funds for the Central Universities SCUT(2014ZG0037)the China Postdoctoral Science Foundation(2012M511561)
文摘The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex energy function form. At the same time, the parameters of LIF are hard to be chosen for better per- formance. A global minimization of the adaptive LIF energy model is proposed. The regularized length term which constrains the zero level set is introduced to improve the accuracy of the bound- aries, and a global minimization of the active contour model is presented, in addition, based on the statistical information of the intensity histogram, the standard deviation σ with respect to the truncated Gaussian window is automatically computed according to images. Consequently, the proposed method improves the performance and adaptivity to deal with the intensity inhomo- geneities. Experimental results for synthetic and real images show desirable performance and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(6137214261571005U1401252)
文摘Due to the frequency of occlusion, cluttering and lowcontrast edges, gray intensity based active contour models oftenfail to segment meaningful objects. Prior shape information is usuallyutilized to segment desirable objects. A parametric shape priormodel is proposed. Firstly, principal component analysis is employedto train object shape and transformation is added to shaperepresentation. Then the energy function is constructed througha combination of shape prior energy, gray intensity energy andshape constraint energy of the kernel density function. The objectboundary extraction process is converted into the parameters solvingprocess of object shape. Besides, two new shape prior energyfunctions are defined when desirable objects are occluded by otherobjects or some parts of them are missing. Finally, an alternatingdecent iteration solving scheme is proposed for numerical implementation.Experiments on synthetic and real images demonstratethe robustness and accuracy of the proposed method.
文摘A variational inhomogeneous image segmentation model based on fuzzy membership functions and Retinex theory is proposed by introducing the fuzzy membership function.The existence of the solution of the proposed model is proved theoretically.A valid algorithm is designed to make numerical solution of the model under the framework of alternating minimization.The last experimental results show that the model can make segmentation of the real image with intensity inhomogeneity effectively.
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
文摘A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
文摘An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust.
基金supported by the National Key R&D Program of China(2018YFC0309400)the National Natural Science Foundation of China(61871188)
文摘In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.Within this research,there is no exact template of the object;instead only several samples are given.The proposed method,called the parametric distribution prior model,extends our previous model by adding the training procedure to learn the prior distribution of the objects.Then this paper establishes the energy function of the active contour model(ACM)with consideration of this parametric form of prior distribution.Therefore,during the process of segmenting,the template can update itself while the contour evolves.Experiments are performed on the airplane data set.Experimental results demonstrate the potential of the proposed method that with the information of prior distribution,the segmentation effect and speed can be both improved efficaciously.
基金Sponsored by The National Natural Science Foundation of China(60872065)Science and Technology on Electro-optic Control Laboratory and Aviation Science Foundation(20105152026)State Key Laboratory Open Fund of Novel Software Technology,Nanjing University(KFKT2010B17)
文摘The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.
文摘Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.