期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
混合空间新型贝叶斯网络模型的图像分割应用研究 被引量:3
1
作者 陈沅涛 刘煊赫 《计算机工程与科学》 CSCD 北大核心 2017年第11期2066-2073,共8页
现有研究工作没有确定概率向量模型的混合部分比例,所以无法解决MCMC方法的迭代收敛性问题。在具有空间平滑约束的高斯混合模型GMM基础上提出新型贝叶斯网络模型并应用于图像分割领域。模型应用隐Dirichlet分布LDA的概率密度模型和Gauss... 现有研究工作没有确定概率向量模型的混合部分比例,所以无法解决MCMC方法的迭代收敛性问题。在具有空间平滑约束的高斯混合模型GMM基础上提出新型贝叶斯网络模型并应用于图像分割领域。模型应用隐Dirichlet分布LDA的概率密度模型和Gauss-Markov随机域MRF的隐Dirichlet参数混合过程来实现参数平滑过程,具有如下优点:针对空间平滑约束规范概率向量模型比例;使用最大后验概率MAP和期望最大化算法EM完成闭合参数的更新操作过程。实验表明,本模型比其他应用GMM方法的图像分割效果好。该模型已成功应用到自然图像和有噪声干扰的自然艺术图像分割过程中。 展开更多
关键词 贝叶斯模型 隐Dirichlet分布 高斯混合模型 图像分割 期望最大化方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部