期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ship Path Planning Based on Sparse A^(*)Algorithm
1
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation image preprocessing
在线阅读 下载PDF
Improved preprocessed Yaroslavsky filter based on shearlet features
2
作者 吴一全 戴一冕 吴健生 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期135-144,共10页
An improved preprocessed Yaroslavsky filter(IPYF)is proposed to avoid the nick effects and obtain a better denoising result when the noise variance is unknown.Different from its predecessors,the similarity between t... An improved preprocessed Yaroslavsky filter(IPYF)is proposed to avoid the nick effects and obtain a better denoising result when the noise variance is unknown.Different from its predecessors,the similarity between two pixels is calculated by shearlet features.The feature vector consists of initial denoised results by the non-subsampled shearlet transform hard thresholding(NSST-HT)and NSST coefficients,which can help allocate the averaging weights more reasonably.With the correct estimated noise variance,the NSST-HT can provide good denoised results as the initial estimation and high-frequency coefficients contribute large weights to preserve textures.In case of the incorrect estimated noise variance,the low-frequency coefficients will mitigate the nick effect in cartoon regions greatly,making the IPYF more robust than the original PYF.Detailed experimental results show that the IPYF is a very competitive method based on a comprehensive consideration involving peak signal to noise ratio(PSNR),computing time,visual quality and method noise. 展开更多
关键词 image processing image denoising preprocessed Yaroslavsky filter shearlet features nick effect
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部