Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum...Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.展开更多
Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs compari...Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas ...Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image.展开更多
This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invar...This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.展开更多
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像...针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。展开更多
文摘Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.
文摘Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金Project(60972114) supported by the National Natural Science Foundation of ChinaProject(2012M512168) supported by China Postdoctoral Science Foundation
文摘Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image.
基金supported by the National Natural Science Foundation of China(61550110248)
文摘This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.
文摘针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。