针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成...针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。展开更多
针对原始高光谱图像信噪比较低导致的分类精度差及边缘地物光谱特征易混淆的问题,文中提出一种基于递归滤波的高光谱图像地物分类方法。首先,对原始高光谱图像进行递归滤波处理,并利用主成分分析方法降低滤波后图像的维度,消除高光谱图...针对原始高光谱图像信噪比较低导致的分类精度差及边缘地物光谱特征易混淆的问题,文中提出一种基于递归滤波的高光谱图像地物分类方法。首先,对原始高光谱图像进行递归滤波处理,并利用主成分分析方法降低滤波后图像的维度,消除高光谱图像中的大部分噪声、弱边缘和小尺度结构;然后,使用递归滤波对主成分分析后的各主成分图像进行一次滤波,在减少图像中一些更小的纹理结构的同时,避免边缘像元光谱特征的混淆;最后,将预处理后的高光谱数据发送至支持向量机分类器进行训练和预测。实验结果表明:在高光谱图像降维前后分别使用递归滤波,能更好地消除图像中的噪声和保留多尺度边缘特征;在Indian Pines和University of Pavia高光谱数据集上,所提方法的总体分类精度分别为98.17%,92.17%,相较于其他的分类方法平均提高11%和7%。展开更多
文摘针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。
文摘针对原始高光谱图像信噪比较低导致的分类精度差及边缘地物光谱特征易混淆的问题,文中提出一种基于递归滤波的高光谱图像地物分类方法。首先,对原始高光谱图像进行递归滤波处理,并利用主成分分析方法降低滤波后图像的维度,消除高光谱图像中的大部分噪声、弱边缘和小尺度结构;然后,使用递归滤波对主成分分析后的各主成分图像进行一次滤波,在减少图像中一些更小的纹理结构的同时,避免边缘像元光谱特征的混淆;最后,将预处理后的高光谱数据发送至支持向量机分类器进行训练和预测。实验结果表明:在高光谱图像降维前后分别使用递归滤波,能更好地消除图像中的噪声和保留多尺度边缘特征;在Indian Pines和University of Pavia高光谱数据集上,所提方法的总体分类精度分别为98.17%,92.17%,相较于其他的分类方法平均提高11%和7%。