Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret...Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.展开更多
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density ...In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density of HTPB coating at different aging stages were tested using low-field^1 H NMR and the variation of cross-linking density was analyzed.The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established.The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient.Combined with uniaxial tensile test results,a prestrain aging constitutive model of HTPB coating was established.The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain.Under prestrain conditions,the crosslinking density of HTPB coating decreases at the early stage,and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging.The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R>0.9500 and R>0.9900 respectively,which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.展开更多
Objective To establish the mitral regurgitation swine model and study the change of hydrogen sulfide(H2S)system in chronic heart failure model.Methods Miniature pigs were randomly divided into two groups,the control g...Objective To establish the mitral regurgitation swine model and study the change of hydrogen sulfide(H2S)system in chronic heart failure model.Methods Miniature pigs were randomly divided into two groups,the control group(n=6)and mitral regurgitation group(n=6).Chronic heart failure models were established by pulling mitral chordal through a small incision extracorporeal.展开更多
Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain...Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiological assessment,the amplitude of the AP,the neuronal firing frequency and the electrophysiological signal conduction velocity,which could be affected by stretching,were used as outputs of the model.Results&discussion To understand the mechanoelectrical coupling of neurons under stretching,we developed a mechanoelectrical coupling model.To verify the model,we simulated a slow stretching on an axon following the experimental study in the literature,we observed that as the strain increases,the peak AP declines faster,which is consistent with the experimental data.Moreover,the reduced AP cannot be restored to the original peak,implying that the damage is irreversible.The simulation results also predict that strain induces a more frequent neuronal firing and a faster conduction.In a realistic situation,in addition to stretching,the loading condition is very complicated,which may induce complex axonal deformation(e.g., necking and swelling along the axons).We also simulated such necking deformation impairment and observed that the AP amplitude decreases at the necking region and recovers after that,indicating a blockage of the AP;and the conduction velocity decreases with the increase in deformation degree.Conclusions In this study,we developed a mechanoelectrical coupling model of neurons under stretching with consideration of axonal plastic deformation.With the model,we found that the effect of mechanical loading on electrophysiology mainly manifests as decreased membrane AP amplitude,a more frequent neuronal firing and a faster electrophysiological signal conduction.The model predicts not only stretch-induced injury but also a more gene ral necking deformation case,which may someday be revealed in future by experiments,providing a reference for the prediction and regulation of neuronal function under mechanical loadings.展开更多
文摘Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
基金supported by the National Defense Pre-Research Foundation of China[grant number ZS2015070132A12002]。
文摘In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density of HTPB coating at different aging stages were tested using low-field^1 H NMR and the variation of cross-linking density was analyzed.The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established.The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient.Combined with uniaxial tensile test results,a prestrain aging constitutive model of HTPB coating was established.The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain.Under prestrain conditions,the crosslinking density of HTPB coating decreases at the early stage,and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging.The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R>0.9500 and R>0.9900 respectively,which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.
文摘Objective To establish the mitral regurgitation swine model and study the change of hydrogen sulfide(H2S)system in chronic heart failure model.Methods Miniature pigs were randomly divided into two groups,the control group(n=6)and mitral regurgitation group(n=6).Chronic heart failure models were established by pulling mitral chordal through a small incision extracorporeal.
基金Supported by National Natural Science Foundation of China (10571036) the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金financially supported by the National Natural Science Foundation of China ( 11522219, 11532009)the Projects of International ( Regional) Cooperation and Exchanges of NSFC ( 11761161004)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China ( 2017JM1026,2017JM8097)the National Project Cultivating Foundation of Xi’an Medical University ( 2017GJFY23)Young Talent Support Plan of Shaanxi Provincethe China Postdoctoral Science Foundation ( 2018M631141,2018M631173)
文摘Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiological assessment,the amplitude of the AP,the neuronal firing frequency and the electrophysiological signal conduction velocity,which could be affected by stretching,were used as outputs of the model.Results&discussion To understand the mechanoelectrical coupling of neurons under stretching,we developed a mechanoelectrical coupling model.To verify the model,we simulated a slow stretching on an axon following the experimental study in the literature,we observed that as the strain increases,the peak AP declines faster,which is consistent with the experimental data.Moreover,the reduced AP cannot be restored to the original peak,implying that the damage is irreversible.The simulation results also predict that strain induces a more frequent neuronal firing and a faster conduction.In a realistic situation,in addition to stretching,the loading condition is very complicated,which may induce complex axonal deformation(e.g., necking and swelling along the axons).We also simulated such necking deformation impairment and observed that the AP amplitude decreases at the necking region and recovers after that,indicating a blockage of the AP;and the conduction velocity decreases with the increase in deformation degree.Conclusions In this study,we developed a mechanoelectrical coupling model of neurons under stretching with consideration of axonal plastic deformation.With the model,we found that the effect of mechanical loading on electrophysiology mainly manifests as decreased membrane AP amplitude,a more frequent neuronal firing and a faster electrophysiological signal conduction.The model predicts not only stretch-induced injury but also a more gene ral necking deformation case,which may someday be revealed in future by experiments,providing a reference for the prediction and regulation of neuronal function under mechanical loadings.