In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatm...In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved.展开更多
The extraction and separation of Cu(Ⅱ)and Fe(Ⅲ)from HCl media using Cyanex 921 in kerosene were investigated.The effect of shaking time,aqueous phase acid concentration,Fe(Ⅲ)/Cu(Ⅱ)concentration,Cyanex 921 concentr...The extraction and separation of Cu(Ⅱ)and Fe(Ⅲ)from HCl media using Cyanex 921 in kerosene were investigated.The effect of shaking time,aqueous phase acid concentration,Fe(Ⅲ)/Cu(Ⅱ)concentration,Cyanex 921 concentration,temperature and aqueous to organic phase ratio on the separation of Cu(Ⅱ)and Fe(Ⅲ)was studied using 0.1 mol/L Cyanex 921 in kerosene.Maximum separation was achieved from 2 mol/L HCl containing 0.001 mol/L Cu(Ⅱ)and 0.005 mol/L Fe(Ⅲ)with 0.1 mol/L Cyanex 921 in kerosene.Feasible separation of copper and iron was also possible from 5 mol/L HCl using 0.02 mol/L Cyanex 921.展开更多
基金Project(10200202002) supported by the National Tobacco Monopolistic Bureau of China project(40473006) supportedby the National Natural Science Foundation of China project(2006KJ010A) supported by the Natural Science Key Research Foundation ofAnhui Province
文摘In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved.
文摘The extraction and separation of Cu(Ⅱ)and Fe(Ⅲ)from HCl media using Cyanex 921 in kerosene were investigated.The effect of shaking time,aqueous phase acid concentration,Fe(Ⅲ)/Cu(Ⅱ)concentration,Cyanex 921 concentration,temperature and aqueous to organic phase ratio on the separation of Cu(Ⅱ)and Fe(Ⅲ)was studied using 0.1 mol/L Cyanex 921 in kerosene.Maximum separation was achieved from 2 mol/L HCl containing 0.001 mol/L Cu(Ⅱ)and 0.005 mol/L Fe(Ⅲ)with 0.1 mol/L Cyanex 921 in kerosene.Feasible separation of copper and iron was also possible from 5 mol/L HCl using 0.02 mol/L Cyanex 921.