The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global deman...The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.展开更多
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou...Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.展开更多
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i...Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.展开更多
In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was ...In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.展开更多
Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 ...Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).展开更多
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium...Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.展开更多
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density o...Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs.展开更多
Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the fiel...Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.展开更多
基金the result of a research project conducted with the funds of the Open R&D program of Korea Electric Power Corporation (R23XO04)supported by the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (K_G012002238601)+2 种基金by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002)by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3I3A1082880)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000320)。
文摘The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.
基金the financial support by MOST (2011CBA00504)NSFC (21133010, 50921004, 212111074) of China
文摘Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.
基金the National Key Research and Development Program of China(2017YFB1104300).
文摘Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.
基金supported by the Fundamental Research Funds for the Central Universities(BLYJ201509)the Fundamental Research Funds for the Central Universities(TD-JC-2013-3)+4 种基金the Program for New Century Excellent Talents in University(NCET-12-0787)Beijing Nova Programme(Z131109000413013)the National Natural Science Foundation of China(51308045)the Foundation of State Key Laboratory of Coal Conversion(Grant No.J14-15-309)Institute of Coal Chemistry,Chinese Academy of Sciences
文摘In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.
基金supported by the National Natural Science Foundation of China (51203071, 51363014 and 51463012)China Postdoctoral Science Foundation (2014M552509, 2015T81064)+2 种基金Natural Science Funds of the Gansu Province (2015GS05123)Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology (J201402)University Scientific Research Project of Gansu Province (2014B-025)
文摘Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).
基金the financial support from the Ministry of Science and Technology of China (grants 2012CB215500 and 2013CB933100)the National Natural Science Foundation of China (grants 21573222 and 21103178)
文摘Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.
基金supported by the National Nature Science Foundations of China(Grant No.21673263,21573265)the Independent Innovation Plan Foundations of Qingdao City of China(Grant No.16-5-1-42-jch)the western Young Scholars Foundations of Chinese Academy of Sciences
文摘Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000)the National Natural Science Foundation of China (Grant No. 11888101)+2 种基金the National Key R&D Program of China (Grant No. 2017YFA0303001)the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY160000)the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDYSSW-SLH021)。
文摘Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.