期刊文献+
共找到3,154篇文章
< 1 2 158 >
每页显示 20 50 100
基于JPS和变半径RS曲线的Hybrid A^(*)路径规划算法
1
作者 张博强 张成龙 +1 位作者 冯天培 高向川 《郑州大学学报(工学版)》 北大核心 2025年第2期19-25,共7页
为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS... 为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS)算法进行起点到终点的路径搜索,将该路径进行拉直处理后作为计算节点启发值的基础;其次,设计了新的启发函数,在Hybrid A^(*)算法扩展前就能完成所有节点启发值的计算,减少了Hybrid A^(*)扩展节点时计算启发值所需的时间;最后,将RS曲线由最小转弯半径搜索改为变半径RS曲线搜索,使RS曲线能够更早搜索到一条无碰撞路径,进一步提升了Hybrid A^(*)算法的搜索效率。仿真结果表明:所提J-Hybrid A^(*)算法在简单环境中比传统Hybrid A^(*)算法和反向Hybrid A^(*)算法用时分别缩短68%、21%,在复杂环境中缩短59%、27%。在不同分辨率地图场景中,随着地图分辨率的提高,规划效率显著提升。实车实验表明:所提J-Hybrid A^(*)算法相较于传统Hybrid A^(*)算法和反向Hybrid A^(*)算法的搜索用时分别减少88%、82%,有效提升了Hybrid A^(*)算法的搜索效率、缩短了路径规划所需时间。 展开更多
关键词 hybrid A^(*)算法 启发函数 JPS算法 RS曲线 路径规划
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
3
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
4
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
Multi-objective coordination optimal model for new power intelligence center based on hybrid algorithm 被引量:1
5
作者 刘吉成 牛东晓 乞建勋 《Journal of Central South University》 SCIE EI CAS 2009年第4期683-689,共7页
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a... In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network. 展开更多
关键词 power intelligence center (PIC) coordination optimal model power network planning hybrid algorithm
在线阅读 下载PDF
Solving open vehicle problem with time window by hybrid column generation algorithm 被引量:1
6
作者 YU Naikang QIAN Bin +2 位作者 HU Rong CHEN Yuwang WANG Ling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期997-1009,共13页
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ... This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time. 展开更多
关键词 open vehicle routing problem with time window(OVRPTW) hybrid column generation algorithm(HCGA) mixed integer programming label setting algorithm
在线阅读 下载PDF
Hybrid Genetic Algorithm for Engineering Structural Optimization with Dis crete Variables
7
作者 WEI Ying-zi 1,2,3, ZHAO Ming-yang 1 (1. Robotics Laboratory, Shenyang Institute of Automation, Chinese Acad emy of Science, Shenyang 110016, China 2. Shenyang Institute of Technology , Shenyang 110016, China 3. Graduate School of the Chinese Academy of Scienc es, Beijing 100039, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期178-,共1页
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r.... Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA. 展开更多
关键词 hybrid genetic algorithm discrete variables o ptimization design imitative full-stress
在线阅读 下载PDF
New Hybrid Genetic Algorithm for Vertex Cover Problems
8
作者 HuoHongwei XuJin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期90-94,共5页
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are ... This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms. 展开更多
关键词 vertex cover hybrid genetic algorithm scan-repair local improvement.
在线阅读 下载PDF
Hybrid Genetic Algorithms with Fuzzy Logic Controller
9
作者 Zheng Dawei & Gen Mitsuo Department of Industrial and Systems Engineering, Ashikaga Institute of Technology, 326, Japan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期9-15,共7页
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com... In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper. 展开更多
关键词 Machine scheduling problem hybrid genetic algorithms Fuzzy logic.
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
10
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
A hybrid algorithm for reengineering the refractive index profile of inhomogeneous coatings from optical in-situ broadband monitoring data
11
作者 S. Wilbrandt O. Stenzel +1 位作者 D. Gbler N. Kaiser 《光学精密工程》 EI CAS CSCD 北大核心 2005年第4期487-491,共5页
Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband... Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved. 展开更多
关键词 光学涂覆技术 折射率 宽带 混合模型 管理方式
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
12
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
考虑多充电桩排队和时间窗的电动货车路径规划
13
作者 胡路 乐诗彤 朱娟秀 《西南交通大学学报》 北大核心 2025年第2期299-307,共9页
在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,... 在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,建立路径优化模型,并将充电站排队模型嵌入其中;优化目标包括最小化车辆耗电成本、司机工资、时间窗惩罚成本、充电桩总成本;为求解该模型,提出一种结合节约里程(C-W)和改进大邻域搜索(LNS)的混合启发式算法,其中,充电站的系统性能指标采用递归算法获得.18组实验结果表明:同步增加充电桩数量可将车辆单次充电的平均排队时间控制在1~5 min,并有效减少2.6%~21.0%的总成本;增加充电站数量可缩短排队时间,但会增加整体路径总成本;当客户时间窗较短或服务时间较长时,充电桩数量变化对时间窗满足的影响更为显著. 展开更多
关键词 物流 电动货车 充电站 混合启发式算法 递归算法
在线阅读 下载PDF
介质金属复合目标的电磁散射高效建模
14
作者 覃琴 周锋 化梦博 《电讯技术》 北大核心 2025年第1期127-133,共7页
为解决各向异性介质与金属复合目标电磁散射计算困难等问题,提出了一种高效的混合算法,用于模拟各向异性介质涂覆复杂目标的电磁散射。该方法基于阻抗边界条件,通过表面阻抗向量来描述介质的电磁特性,充分发挥了低频矩量法(Method of Mo... 为解决各向异性介质与金属复合目标电磁散射计算困难等问题,提出了一种高效的混合算法,用于模拟各向异性介质涂覆复杂目标的电磁散射。该方法基于阻抗边界条件,通过表面阻抗向量来描述介质的电磁特性,充分发挥了低频矩量法(Method of Moments,MoM)和高频物理光学法(Physical Optics,PO)的各自优势,以实现对介质金属复合目标进行高精度和快速的电磁仿真。通过采用阻抗边界条件(Impedance Boundary Conditions,IBC)和等效原理,研究将薄层介质涂覆目标的电磁散射问题等效为阻抗面上等效电磁流的辐射问题,从而实现了对各向异性介质涂覆复杂目标雷达截面(Radar Cross Section,RCS)的高精度快速计算。为了验证算法性能,选取了方形平板、简化飞行器及复杂卫星模型进行仿真测试。经过对比分析,所提算法的仿真结果与数值解之间的均方根误差分别为0.82 dB、1.56 dB和2.64 dB,均优于3 dB的工程应用标准误差。此外,该算法在计算消耗内存和计算时长等计算资源方面实现了超过50%的显著提升,充分验证了其准确性和实用价值。 展开更多
关键词 介质金属复合目标 电磁散射 各向异性 混合算法
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
15
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于混合遗传蚁群优化随机森林算法的激光熔覆Ni60裂纹预测与工艺参数优化
16
作者 李涛 邓林辉 +2 位作者 莫彬 石非凡 刘伟嵬 《中国机械工程》 北大核心 2025年第6期1322-1328,1337,共8页
为了探究激光熔覆Ni60过程中熔覆层裂纹与加工工艺参数之间的复杂非线性映射关系,采用熵值法结合TOPSIS综合评价法对熔覆层裂纹进行综合表征评价,并使用混合遗传蚁群算法(HGA-ACO)优化随机森林算法(RFA)超参数,搭建工艺参数与裂纹评价... 为了探究激光熔覆Ni60过程中熔覆层裂纹与加工工艺参数之间的复杂非线性映射关系,采用熵值法结合TOPSIS综合评价法对熔覆层裂纹进行综合表征评价,并使用混合遗传蚁群算法(HGA-ACO)优化随机森林算法(RFA)超参数,搭建工艺参数与裂纹评价指标间预测模型,最后使用遗传算法进行工艺参数反向寻优。研究结果表明:与ACO-RFA模型相比,HGA-ACO-RFA在预测精度与评价指标方面有显著改善,反向寻优获得的最优工艺参数可制备出几乎无裂纹的熔覆层。 展开更多
关键词 激光熔覆 裂纹 评价方法 混合遗传蚁群算法 随机森林算法
在线阅读 下载PDF
改进候鸟算法求解可重入混流车间批量流调度
17
作者 罗亚波 喻少龙 +1 位作者 张峰 李存荣 《浙江大学学报(工学版)》 北大核心 2025年第8期1598-1607,共10页
鉴于阵列车间手工排产难以适应复杂多变的生产需求,构建可重入混合流水车间批量流调度问题(RHFSP-LS)模型,提出改进多目标候鸟优化算法进行求解.设计基于非支配排序、加权总和与外部档案集的多目标候鸟优化算法.利用Logistic混沌映射和... 鉴于阵列车间手工排产难以适应复杂多变的生产需求,构建可重入混合流水车间批量流调度问题(RHFSP-LS)模型,提出改进多目标候鸟优化算法进行求解.设计基于非支配排序、加权总和与外部档案集的多目标候鸟优化算法.利用Logistic混沌映射和NEH算法,提高了初始种群的质量.提出“子批优先”+“批次优先”的解码策略,提升了算法对于特殊问题的求解能力.提出基于个体年龄的邻域搜索,优化了种群的邻域搜索方向.提出结合外部档案集的逃逸机制,提升了算法的全局搜索能力.通过实验验证了所提策略及算法在解决RHFSP-LS上的有效性与优越性,保证了整体生产周期与各工艺批次交货期限的有效平衡. 展开更多
关键词 可重入混合流水车间 批量流 候鸟优化算法 多目标优化 生产调度
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
18
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
提升LCL型并网逆变器在弱电网下适应性的优化策略
19
作者 王涛 于少娟 刘立群 《电力系统及其自动化学报》 北大核心 2025年第1期26-34,共9页
为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误... 为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误差和系统稳定性指标在内的多目标函数,并利用混合粒子群优化算法对控制器参数进行优化,进而提高系统在电网阻抗发生变化时的鲁棒性。最后,通过仿真平台以及实验验证了该策略的有效性。 展开更多
关键词 并网逆变器 弱电网 混合粒子群优化算法 多目标优化
在线阅读 下载PDF
融合RSSI-TDOA的煤矿井下机车定位
20
作者 赵斌 付帅 +1 位作者 高丽霞 李森森 《测绘通报》 北大核心 2025年第6期84-89,122,共7页
针对矿井转辙机无线控制中需要对道岔区域内机车精准定位的问题,本文提出了一种融合接收信号强度指示(RSSI)和到达时间差(TDOA)的远距离无线电(LoRa)辅助定位方法。首先,根据改进的路径损耗因子建立了RSSI测距模型,并通过基于卡尔曼滤... 针对矿井转辙机无线控制中需要对道岔区域内机车精准定位的问题,本文提出了一种融合接收信号强度指示(RSSI)和到达时间差(TDOA)的远距离无线电(LoRa)辅助定位方法。首先,根据改进的路径损耗因子建立了RSSI测距模型,并通过基于卡尔曼滤波、高斯滤波、中值滤波和均值滤波的混合滤波方法减少噪声影响;然后,采用加权质心三边定位算法初步确定机车坐标;最后,通过TDOA泰勒级数迭代法优化定位精度。试验结果表明,经过混合滤波处理后,在25 m范围内的测距误差小于1.5 m,优化后的矿机车定位坐标精度优于0.1 m。试验表明,融合算法相较于单一RSSI定位算法提升了定位精度,为矿机车在道岔区域的精准定位提供了新的解决方案,提升了矿井转辙机无线控制系统的安全性和可靠性。 展开更多
关键词 矿车定位 测距算法 混合滤波算法 RSSI TDOA LoRa 无线通信
在线阅读 下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部