This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained ...This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm^2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66V whereas that of the SJ SiGe diode is only 0.52V voltages are 203 V for the former and 235 V for the latter. at operating current density of 10A/cm^2. The breakdown Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.展开更多
The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze ...The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze the characteristics of fault arc based on magnetic-hydrodynamic (MHD) theory. The advantage of such a model is that the thermal transfer coefficient can be determined by depending on the numerical method alone. The influence of net emission coefficients (NEC) radiation model and P1 model on fault arc is analyzed in detail. Results show that NEC model predicts more radiation energy and less pressure rise without the re-absorption effect considered. As a consequence, P1 model is more suitable to calculate the pressure rise caused by fault arc. Finally, the pressure rise during longer arcing time for different arc currents is predicted.展开更多
Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dyn...Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.展开更多
Al/ZnO/P^(++)-Si diodes exhibit typical unipolar resistive switching behaviors.The electroforming-free characteristics are observed after annealing the ZnO thin film at 400℃ in air.The ON/OFF ratios of the resistance...Al/ZnO/P^(++)-Si diodes exhibit typical unipolar resistive switching behaviors.The electroforming-free characteristics are observed after annealing the ZnO thin film at 400℃ in air.The ON/OFF ratios of the resistance are in the range of 104–105 at a very low operation voltage of 0.1 V,and the devices show good endurance characteristics of over 400 cycles with negligible reduction.Finally,the memory mechanisms of the diodes are proposed on the basis of the current-voltage and resistance-voltage results.These results indicate that Al/ZnO/P^(++)-Si devices have potential applications in nonvolatile memory devices.展开更多
A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a...A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a maximum total current efficiency (CE) and power efficiency (PE) of 48.1 cd/A and 37.6 Im/W, respectively, while the three-color hybrid WOLED shows a maximum total CE and PE of 33.8 cd/A and 25.7Im/W, respectively. The color rendering index of the three-color hybrid WOLEDs are ≥ 75, which is already a sufficient level for many commercial lighting applications. In addition, both the two-color and three-color hybrid WOLEDs show low efficiency roll-off and stable color. Furthermore, devices with the new interlayer show much higher performance than devices with the most commonly used 4,4-N,N-dicarbazolebiphenyl and N,N'-di(naphthalene-l-yl)-N,N'- diphenyl-benzidine interlayers.展开更多
Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and c...Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and can serve as an important technical method for high-speed communications in the future.Among these terahertz communication technologies,terahertz direct modulation technology is a key means to achieve low system complexity and power consumption.In this paper,a review and outlook of terahertz direct modulation technology are proposed from the aspects of high-electron-mobilitytransistor-based terahertz direct modulation,parallelswitch terahertz direct modulation,diode-based terahertz direct modulation,quantum cascade laser-based terahertz direct modulation and new-material-based terahertz direct modulation.We hope through this paper that more readers can gain knowledge about the development and challenges of terahertz direct modulation technology for high-speed communication systems,thus promoting the development of high-speed terahertz communication technology based on direct modulation.展开更多
A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by a...A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by an HJD which is partially embedded on one side of the gate.When the device is in the turn-on state,the body parasitic diode can be effectively controlled by the embedded HJD,the switching loss thus decreases for the device.Moreover,a highly-doped P+layer is encircled the gate oxide on the same side as the HJD and under the gate oxide,which is used to lighten the electric field concentration and improve the reliability of gate oxide layer.Physical mechanism for the HJD-TMOS is analyzed.Comparing with the conventional device with the same level of on-resistance,the breakdown voltage of the HJD-TMOS is improved by 23.4%,and the miller charge and the switching loss decrease by 43.2%and 48.6%,respectively.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
A novel method for designing a beam-switching antenna with the plane dipole is presented. The antenna is composed of double dipoles placed at the center of an active square structure that is divided in four equal sect...A novel method for designing a beam-switching antenna with the plane dipole is presented. The antenna is composed of double dipoles placed at the center of an active square structure that is divided in four equal sectors by metallic sheets. Metallic patches at the outside of the structure are used to enhance the radiation performance of the antenna. In each step, the diodes in one sector are on, whereas other diodes are off. The sector with off-state diodes defines the direction of the radiation pattern. An antenna model is designed on the substrate of FR4. The proposed antenna operates from 4.8 GHz to 5.5 GHz with gain of 6.3 dBi and F/B (front to back ratio) of 13.2 dBi when the operating frequency is 5.2 GHz. The antenna radiation pattern can be swept in the entire azimuth plane in four steps with a 3 dB beamwidth of 90%. The results reveal that the antenna could be used in the base station of the wireless communication systems.展开更多
An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x ...An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x 1 side-pumping coupler is introduced to perform backward pumping, and a 10/130%tm Yb fiber is adopted. The acoustic-optic component operates in the first direction, achieving a Q-switched pulse with a repetition rate adjustable in the range of 20 kHz-80 kHz. Under a repetition rate of 20 kHz and a pump power of 6.76 W, the fiber laser obtains a highly efficient and stable pulse output, with an average power of 4.3 W, a pulse width of 56 ns, a peak power of 3.83 kW, and a power density of 1.39x 101~ W/cm2. Particularly, the optic-optic conversion efficiency of the laser reaches as high as 64%. Another feature of the pulsed laser is that the high reflection mirror reflects the pump light as well, which brings the secondary absorption of the pump power into the gain fiber.展开更多
The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport ...The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 50477012)the Doctoral Program Foundation of Institutes of Higher Education of China (Grant No 20050700006)the Special Scientific Research Program of the Education Bureau of Shaanxi Province,China (Grant No 05JK268)
文摘This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm^2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66V whereas that of the SJ SiGe diode is only 0.52V voltages are 203 V for the former and 235 V for the latter. at operating current density of 10A/cm^2. The breakdown Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.
基金supported by National Key Basic Research Program of China(973 Program)(No.2015CB251001)National Natural Science Foundation of China(Nos.51221005,51177124,51377128,51323012)+1 种基金the Science and Technology Project Funds of the Grid State Corporation SGSNKYOOKJJS1501564Shaanxi Province Natural Science Foundation of China(No.2013JM-7010)
文摘The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze the characteristics of fault arc based on magnetic-hydrodynamic (MHD) theory. The advantage of such a model is that the thermal transfer coefficient can be determined by depending on the numerical method alone. The influence of net emission coefficients (NEC) radiation model and P1 model on fault arc is analyzed in detail. Results show that NEC model predicts more radiation energy and less pressure rise without the re-absorption effect considered. As a consequence, P1 model is more suitable to calculate the pressure rise caused by fault arc. Finally, the pressure rise during longer arcing time for different arc currents is predicted.
基金the key project of the National Science and Technology Major Project(Grant No.2018ZX03001017)the project of the CAS engineering laboratory for intelligent agricultural machinery equipment(Grant No.GC201907-02).
文摘Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.
基金Supported by the National Basic Research Program of China under Grants Nos 2009CB930600,2012CB933301 and 2012CB723402the National Natural Science Foundation of China under Grant No 21144004+3 种基金the Key Project of the Ministry of Education of China under Grant No 20113223120003the NSF of Jiangsu Province under Grant Nos BK2011761 and SBK201122680the NSF of the Education Committee of Jiangsu Province under Grant No 11KJB510017NJUPT under Grant Nos NY211022 and NY210030.
文摘Al/ZnO/P^(++)-Si diodes exhibit typical unipolar resistive switching behaviors.The electroforming-free characteristics are observed after annealing the ZnO thin film at 400℃ in air.The ON/OFF ratios of the resistance are in the range of 104–105 at a very low operation voltage of 0.1 V,and the devices show good endurance characteristics of over 400 cycles with negligible reduction.Finally,the memory mechanisms of the diodes are proposed on the basis of the current-voltage and resistance-voltage results.These results indicate that Al/ZnO/P^(++)-Si devices have potential applications in nonvolatile memory devices.
基金Supported by the National Natural Science Foundation of China under Grant No 61076066the Innovation Project of Science and Technology Plan Projects of Shaanxi Province under Grant No 2011KTCQ01-09
文摘A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a maximum total current efficiency (CE) and power efficiency (PE) of 48.1 cd/A and 37.6 Im/W, respectively, while the three-color hybrid WOLED shows a maximum total CE and PE of 33.8 cd/A and 25.7Im/W, respectively. The color rendering index of the three-color hybrid WOLEDs are ≥ 75, which is already a sufficient level for many commercial lighting applications. In addition, both the two-color and three-color hybrid WOLEDs show low efficiency roll-off and stable color. Furthermore, devices with the new interlayer show much higher performance than devices with the most commonly used 4,4-N,N-dicarbazolebiphenyl and N,N'-di(naphthalene-l-yl)-N,N'- diphenyl-benzidine interlayers.
基金the The National Key Research and Development Program of China under Contract No.2018YFB1801503National Natural Science Foundation of China under Contract Nos.61931006,61921002,61771327,61927813,61775229,61991430 and 62022022.
文摘Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and can serve as an important technical method for high-speed communications in the future.Among these terahertz communication technologies,terahertz direct modulation technology is a key means to achieve low system complexity and power consumption.In this paper,a review and outlook of terahertz direct modulation technology are proposed from the aspects of high-electron-mobilitytransistor-based terahertz direct modulation,parallelswitch terahertz direct modulation,diode-based terahertz direct modulation,quantum cascade laser-based terahertz direct modulation and new-material-based terahertz direct modulation.We hope through this paper that more readers can gain knowledge about the development and challenges of terahertz direct modulation technology for high-speed communication systems,thus promoting the development of high-speed terahertz communication technology based on direct modulation.
基金the Natural Science Foundation Project of Chongqing Science and Technology Commission,China(Grant No.cstc2020jcyj-msxmX0243)the Fundamental Research Funds for the Central Universities,China(Grant No.2020CDJ-LHZZ-024)the Chongqing Technology Innovation and Application Development Key Project,China(Grant No.cstc2019jscx-zdztzxX0051).
文摘A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by an HJD which is partially embedded on one side of the gate.When the device is in the turn-on state,the body parasitic diode can be effectively controlled by the embedded HJD,the switching loss thus decreases for the device.Moreover,a highly-doped P+layer is encircled the gate oxide on the same side as the HJD and under the gate oxide,which is used to lighten the electric field concentration and improve the reliability of gate oxide layer.Physical mechanism for the HJD-TMOS is analyzed.Comparing with the conventional device with the same level of on-resistance,the breakdown voltage of the HJD-TMOS is improved by 23.4%,and the miller charge and the switching loss decrease by 43.2%and 48.6%,respectively.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金supported by the Chongqing Municipal Science and Technology Commission of Natural Science Foundation of China under Grant No.cstcjjA40013
文摘A novel method for designing a beam-switching antenna with the plane dipole is presented. The antenna is composed of double dipoles placed at the center of an active square structure that is divided in four equal sectors by metallic sheets. Metallic patches at the outside of the structure are used to enhance the radiation performance of the antenna. In each step, the diodes in one sector are on, whereas other diodes are off. The sector with off-state diodes defines the direction of the radiation pattern. An antenna model is designed on the substrate of FR4. The proposed antenna operates from 4.8 GHz to 5.5 GHz with gain of 6.3 dBi and F/B (front to back ratio) of 13.2 dBi when the operating frequency is 5.2 GHz. The antenna radiation pattern can be swept in the entire azimuth plane in four steps with a 3 dB beamwidth of 90%. The results reveal that the antenna could be used in the base station of the wireless communication systems.
基金supported by the National Natural Science Foundation of China(Grant No.61307057)the State Key Laboratory of Tribology,Tsinghua University,China(Grant No.SKLT12B08)China Postdoctoral Science Foundation(Grant Nos.2012M520258 and 2013T60109)
文摘An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x 1 side-pumping coupler is introduced to perform backward pumping, and a 10/130%tm Yb fiber is adopted. The acoustic-optic component operates in the first direction, achieving a Q-switched pulse with a repetition rate adjustable in the range of 20 kHz-80 kHz. Under a repetition rate of 20 kHz and a pump power of 6.76 W, the fiber laser obtains a highly efficient and stable pulse output, with an average power of 4.3 W, a pulse width of 56 ns, a peak power of 3.83 kW, and a power density of 1.39x 101~ W/cm2. Particularly, the optic-optic conversion efficiency of the laser reaches as high as 64%. Another feature of the pulsed laser is that the high reflection mirror reflects the pump light as well, which brings the secondary absorption of the pump power into the gain fiber.
基金National Natural Science Foundation of China(U2468201,62122012,62221001).
文摘The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.