The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein t...The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein the optical observation is aided by one-way Doppler measurements.The errors are then analyzed respectively for the optical observation and one-way Doppler measurements.The real-time calculating scheme which exploits the extended Kalman filter(EKF)framework is designed for the integrated navigation.The simulation tests demonstrate that the errors of optical navigation,which select the Mars moon as the observation target,are relatively smaller than those in the Mars-orientation optical navigation case.On one hand,the integrated navigation errors do not depend on the selecting pattern of optical observation targets.On the other hand,the integrated navigation errors are significantly reduced as compared with those in the optical-alone autonomous navigation mode.展开更多
For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we pro...For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.展开更多
Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dus...Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dustries.The TDI SIE's results in these trends are presented.展开更多
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n...Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.展开更多
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur...In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.展开更多
The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity ca...The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.展开更多
Phase measuring deflectometry(PMD)is a robust,noncoherent technique for the characterization of specular surface.For measuring high specular reflectivity surface,PMD can deliver micron radian range local gradient.Howe...Phase measuring deflectometry(PMD)is a robust,noncoherent technique for the characterization of specular surface.For measuring high specular reflectivity surface,PMD can deliver micron radian range local gradient.However,when the measured surface has low specular reflectivity,the accuracy of the measured gradient is low since the captured fringe pattern shows low signal to noise ratio.The phase error characteristics in PMD system when testing low reflectivity surfaces are analyzed.The analysis illustrates that the random phase error increases rapidly while the nonlinear error drops slowly with the decreasing of the tested surface reflectivity.In order to attain high precision measurement of low reflectivity specular surface,a robust error reduction method based on wavelet de-noising is proposed to reduce the phase error.This error reduction method is compared with several other normally used methods in both simulation and experiment work.The method based on the wavelet de-noising shows better performance when measuring the low reflectivity specular surface.展开更多
The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,a...The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.展开更多
A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the re...A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the received light spot size and its motion with the changes of the defocusing amount of detector photosensitive surface and the detector position attitude in the optical path, a mathematic expression of photoelectrical conversion is given, which can be applicable to random setting position of the detector at any time. Based on least square support vector machine (LS SVM), the mapping relationship among the output signal linear characteristic parameters (zero neighborhood gradient and intercept), the defocusing amount of the detector and the installation position attitude angle is established. Thus, the multiple dimensional high accuracy measuring and adjusting control system can be left out, and adaptive measurement of the detector parameters can be realized. Compared with existed measurement model and method, the presented model has the advantages of more clear physical meaning, closer to work mechanism of detector, acquiring more complete sample data and wiping out the dead spots or bad spots in measurement. And the accuracy of displacement measurement is increased to 3?μm. At the same time, this measurement mode provides a technical shortcut for three-dimensional small angle measurement.展开更多
基金the National Natural Science Foundation of China(61273090).
文摘The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein the optical observation is aided by one-way Doppler measurements.The errors are then analyzed respectively for the optical observation and one-way Doppler measurements.The real-time calculating scheme which exploits the extended Kalman filter(EKF)framework is designed for the integrated navigation.The simulation tests demonstrate that the errors of optical navigation,which select the Mars moon as the observation target,are relatively smaller than those in the Mars-orientation optical navigation case.On one hand,the integrated navigation errors do not depend on the selecting pattern of optical observation targets.On the other hand,the integrated navigation errors are significantly reduced as compared with those in the optical-alone autonomous navigation mode.
基金Projects(61672542,61573380)supported by the National Natural Science Foundation of China
文摘For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.
文摘Modern industry and science take novel optical measuring systems and laser technologies with high resolution and productivity for solving actual tasks,including safety problems for mining,oil,atomic and railway in-dustries.The TDI SIE's results in these trends are presented.
基金Projects(U1934207,51778630,11972379)supported by the National Natural Science Foundation of ChinaProject(2020zzts148)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GJJ200657)supported the Research Project of Jiangxi Provincial Education Department,China。
文摘Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.
基金Projects(51808563,51925808)supported by the National Natural Science Foundation of ChinaProject(KLWRTBMC18-03)supported by the Open Research Fund of the Key Laboratory of Wind Resistance Technology of Bridges of ChinaProject(2017YFB1201204)supported by the National Key R&D Program of China。
文摘In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.
文摘The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.
基金support by the National Nature Science Foundation of China (61421002, 61327004)
文摘Phase measuring deflectometry(PMD)is a robust,noncoherent technique for the characterization of specular surface.For measuring high specular reflectivity surface,PMD can deliver micron radian range local gradient.However,when the measured surface has low specular reflectivity,the accuracy of the measured gradient is low since the captured fringe pattern shows low signal to noise ratio.The phase error characteristics in PMD system when testing low reflectivity surfaces are analyzed.The analysis illustrates that the random phase error increases rapidly while the nonlinear error drops slowly with the decreasing of the tested surface reflectivity.In order to attain high precision measurement of low reflectivity specular surface,a robust error reduction method based on wavelet de-noising is proposed to reduce the phase error.This error reduction method is compared with several other normally used methods in both simulation and experiment work.The method based on the wavelet de-noising shows better performance when measuring the low reflectivity specular surface.
基金the support from the National Key Research and Development Program of China[2018YFA0703400].
文摘The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.
文摘A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the received light spot size and its motion with the changes of the defocusing amount of detector photosensitive surface and the detector position attitude in the optical path, a mathematic expression of photoelectrical conversion is given, which can be applicable to random setting position of the detector at any time. Based on least square support vector machine (LS SVM), the mapping relationship among the output signal linear characteristic parameters (zero neighborhood gradient and intercept), the defocusing amount of the detector and the installation position attitude angle is established. Thus, the multiple dimensional high accuracy measuring and adjusting control system can be left out, and adaptive measurement of the detector parameters can be realized. Compared with existed measurement model and method, the presented model has the advantages of more clear physical meaning, closer to work mechanism of detector, acquiring more complete sample data and wiping out the dead spots or bad spots in measurement. And the accuracy of displacement measurement is increased to 3?μm. At the same time, this measurement mode provides a technical shortcut for three-dimensional small angle measurement.