Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo...Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environmen...Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains.展开更多
The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this pape...The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.展开更多
In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h...In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.展开更多
Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method ca...Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程...介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程序的方法。展开更多
Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co n...Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co ntinues to be major challenges for industries in addressing accuracy improvement . This study presents a method of improving machining accuracy in ECM by using a dual pole tool with a metallic bush outside the insulated coating of a cathode tool. The bush is connected with anode and so the electric field at the side gap area is substantially weakened. The modeling and simulation indicate that the p ositive bush brings down the current density at the side gap area of the machine d hole and hence reduces the stray material removal there. It has been experimen tally observed that the machining accuracy and the process stability are signifi cantly improved.展开更多
The Al 2O 3 particles reinforced aluminum matrix composite (Al 2O 3p/Al) are more and more widely used for their excellent physical and chemical properties. However, their poor machinability leads to severe tool wear ...The Al 2O 3 particles reinforced aluminum matrix composite (Al 2O 3p/Al) are more and more widely used for their excellent physical and chemical properties. However, their poor machinability leads to severe tool wear and bad machined surface. In this paper laser assisted machining is adopted in machining Al 2O 3p/Al composite and good result was obtained. The result of experiment shows in machining Al 2O 3p/Al composites the cutting force is reduced in 30%~50%, the tool wear is reduced in 20%~30% and machined surface quality is improved in laser assisted machining as compared with conventional cutting. The physical model of the cutting process is set up and explains the reason why the cutting forced are reduced. The state of the particles is the main influence of the change. When the material of cutting zone is heating by laser, the aluminum matrix becomes softer and easier in plastic deformation, which leads to the reduction of the pushing force from the tool to the machined surface. The soften aluminum matrix is more easy to be squeezed out from the machined surface, and it leads the concentration of the Al 2O 3 particles in the surface layer of machined surface. The softening effect of laser heating on aluminum matrix reduces the pushing forces of the Al 2O 3 particles on the clearance face of cutting tool, which is just the reason for the severe cutting tool wear in conventional machining of Al 2O 3p/Al composite. Because the Al 2O 3 particles were pushed in during the cutting process, the particles increased in the surface layer. Because of the difference in thermal conductivity and thermal expansion between the Al-matrix and Al 2O 3 particle, residual stress is changed in the matrix after machining due to the extrusion of the tool, deformation of the matrix and displacement of the Al 2O 3 particle in the matrix. Temperature gradient comes into the cutting zone and the work-piece surface layer, it will lead to the increase of thermal stress and misfit dislocation in the matrix. The residual stress is compressive in the laser assisted hot cutting surface, the compressive stress is nearly triple times than that in the conventional cutting surface. Some analysis on the mechanism of laser heat assisted machining of Al 2O 3p/Al composite is given in the paper too.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody s...An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains.展开更多
This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered...This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstruct...The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.展开更多
The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e...The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another.展开更多
This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise...This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.展开更多
Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China.Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodyna...Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China.Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodynamic assessment,this paper primarily reviews five meaningful progresses on the aerodynamics of the train-bridge system done by Wind Tunnel Laboratory of Central South University in the past several years.Firstly,the flow around the train and the uncertainty origin of the aerodynamic assessment are described from the fluid mechanism point of view.After a brief introduction of the current aerodynamic assessment methods with their strengths and weaknesses,a new-developed TRAIN-INFRASTRUCTURE rig with the maximum launch speed of 35 m/s is introduced.Then,several benchmark studies are presented,including the statistic results of the characterized geometry parameters of the currently utilized bridge-decks,the aerodynamics of the train,and the aerodynamics of the flat box/truss bridge-decks.Upon compared with the foregoing mentioned benchmarks,this paper highlights the aerodynamic interference of the train-bridge system associated with its physical natures.Finally,a porosity-and orientation-adjustable novel wind barrier with its effects on the aerodynamics of the train-bridge system is discussed.展开更多
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu...Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.展开更多
The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was develo...The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing.展开更多
文摘Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金Project(12372049)supported by the National Natural Science Foundation of ChinaProject(2682023ZTPY036)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2023TPL-T06)supported by the Independent Project of State Key Laboratory of Rail Transit Vehicle System,China。
文摘Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains.
基金Project(2023YFB2604304)supported by the National Key R&D Program of ChinaProjects(52122810,51978586,51778542,U23A20666,52472458)supported by the National Natural Science Foundation of China+1 种基金Project(K2022G034)supported by the Technology Research and Development Program of China National Railway Group Co.Ltd.Projects(2020JDJQ0033,2023NSFSC0884)supported by Sichuan Province Science and Technology Support Program,China。
文摘The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.
基金Project supported by the Haier GroupProject supported by the Eskisehir Osmangazi University,Türkiye。
文摘In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.
基金Projects(52302447,52388102,52372369)supported by the National Natural Science Foundation of China。
文摘Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
文摘Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co ntinues to be major challenges for industries in addressing accuracy improvement . This study presents a method of improving machining accuracy in ECM by using a dual pole tool with a metallic bush outside the insulated coating of a cathode tool. The bush is connected with anode and so the electric field at the side gap area is substantially weakened. The modeling and simulation indicate that the p ositive bush brings down the current density at the side gap area of the machine d hole and hence reduces the stray material removal there. It has been experimen tally observed that the machining accuracy and the process stability are signifi cantly improved.
文摘The Al 2O 3 particles reinforced aluminum matrix composite (Al 2O 3p/Al) are more and more widely used for their excellent physical and chemical properties. However, their poor machinability leads to severe tool wear and bad machined surface. In this paper laser assisted machining is adopted in machining Al 2O 3p/Al composite and good result was obtained. The result of experiment shows in machining Al 2O 3p/Al composites the cutting force is reduced in 30%~50%, the tool wear is reduced in 20%~30% and machined surface quality is improved in laser assisted machining as compared with conventional cutting. The physical model of the cutting process is set up and explains the reason why the cutting forced are reduced. The state of the particles is the main influence of the change. When the material of cutting zone is heating by laser, the aluminum matrix becomes softer and easier in plastic deformation, which leads to the reduction of the pushing force from the tool to the machined surface. The soften aluminum matrix is more easy to be squeezed out from the machined surface, and it leads the concentration of the Al 2O 3 particles in the surface layer of machined surface. The softening effect of laser heating on aluminum matrix reduces the pushing forces of the Al 2O 3 particles on the clearance face of cutting tool, which is just the reason for the severe cutting tool wear in conventional machining of Al 2O 3p/Al composite. Because the Al 2O 3 particles were pushed in during the cutting process, the particles increased in the surface layer. Because of the difference in thermal conductivity and thermal expansion between the Al-matrix and Al 2O 3 particle, residual stress is changed in the matrix after machining due to the extrusion of the tool, deformation of the matrix and displacement of the Al 2O 3 particle in the matrix. Temperature gradient comes into the cutting zone and the work-piece surface layer, it will lead to the increase of thermal stress and misfit dislocation in the matrix. The residual stress is compressive in the laser assisted hot cutting surface, the compressive stress is nearly triple times than that in the conventional cutting surface. Some analysis on the mechanism of laser heat assisted machining of Al 2O 3p/Al composite is given in the paper too.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
基金Project(2020YFF0304103-03) supported by the National Key Research and Development Program of ChinaProject(2020JJ4737) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project (202045014) supported by the Central University Financial Funds,ChinaProject(P2019J023) supported by the Science and Technology Research Program of China National Railway Group Co.,Ltd。
文摘An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains.
基金Projects(2018YFB1201801-4,2018YFB1201804-2)supported by National Key R&D Program of China。
文摘This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
基金Project (2016YFB1200602-11) supported by National Key R&D Plan of China
文摘The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.
基金Project(U1134203) supported by the National Natural Science Foundation of ChinaProject(132014) supported by Fok Ying Tong Education Foundation,ChinaProject(2011G006) supported by the Technological Research and Development Program of the Ministry of Railways,China
文摘The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another.
基金Project(2017YFB1201103)supported by the National Key Research and Development Plan of ChinaProject(2019zzts540)supported by the Graduate Student Independent Innovation Project of Central South University,China。
文摘This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.
基金Project(2017YFB1201204)supported by National Key R&D Program of ChinaProjects(51925808,U1934209)supported by the National Natural Science Foundation of China。
文摘Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China.Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodynamic assessment,this paper primarily reviews five meaningful progresses on the aerodynamics of the train-bridge system done by Wind Tunnel Laboratory of Central South University in the past several years.Firstly,the flow around the train and the uncertainty origin of the aerodynamic assessment are described from the fluid mechanism point of view.After a brief introduction of the current aerodynamic assessment methods with their strengths and weaknesses,a new-developed TRAIN-INFRASTRUCTURE rig with the maximum launch speed of 35 m/s is introduced.Then,several benchmark studies are presented,including the statistic results of the characterized geometry parameters of the currently utilized bridge-decks,the aerodynamics of the train,and the aerodynamics of the flat box/truss bridge-decks.Upon compared with the foregoing mentioned benchmarks,this paper highlights the aerodynamic interference of the train-bridge system associated with its physical natures.Finally,a porosity-and orientation-adjustable novel wind barrier with its effects on the aerodynamics of the train-bridge system is discussed.
基金Projects(U1134203,51575538)supported by the National Natural Science Foundation of ChinaProject(2014T001-A)supported by the Technological Research and Development Program of China Railways CorporationProject(2015ZZTS210)supported by the Fundamental Research Funds for the Central South Universities of China
文摘Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.
基金Project(50635040) supported by the National Natural Science Foundation of ChinaProject(2009AA044205) supported by the National High Technology Research and Development ProgramProject(BK2008043) supported by the Jiangsu Provincial Natural Science Foundation,China
文摘The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing.