High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
This article gives a brief introduction to manufacturers and markets of sputtering targets as well as the manufacturing technology thereof. Then, it analyzes the application of high-purity gold sputtering targets in t...This article gives a brief introduction to manufacturers and markets of sputtering targets as well as the manufacturing technology thereof. Then, it analyzes the application of high-purity gold sputtering targets in the fields of integrated circuit, information storage, flat panel display, etc. Based on the above, the article analyzes the processing development trend for the high-purity gold sputtering targets in aspects of ultra-high purity, manufacturing technology, analysis and testing technologies.展开更多
The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to...The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.展开更多
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.
基金National key technology support program(2012BAE06B05)
文摘This article gives a brief introduction to manufacturers and markets of sputtering targets as well as the manufacturing technology thereof. Then, it analyzes the application of high-purity gold sputtering targets in the fields of integrated circuit, information storage, flat panel display, etc. Based on the above, the article analyzes the processing development trend for the high-purity gold sputtering targets in aspects of ultra-high purity, manufacturing technology, analysis and testing technologies.
基金Project(51301209) supported by the National Natural Science Foundation of ChinaProject(201191107) supported by Science and Technology Plan of Xinjiang Province,China
文摘The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.