For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains u...This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains unaffected by control actions in a closed-loop system.It is composed of controller residual and output residual and some of further results are developed in frequency domain.Besides the ability of detecting actuator and sensor faults,it is able to detect faults/failures resulting from the computer used for control purpose that generates control signals.Currently,all of existing fault detection schemes cannot achieve the same task at all.A practical DC motor example,with a PID controller,is used to demonstrate the effectiveness of the ToMFIR-based fault detection.A comparison with the standard observer-based technique is also provided.展开更多
As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next...As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.展开更多
As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardne...As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit i...It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.展开更多
An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the ...An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the total narrowband energy of all array elements,and the narrowband power is calculated by MVDR.Finally,final spatial energy spectrum can be obtained by averaging or summing all results of every narrowband frequency bin.Any prior-information about the noise or the signal is unnecessary for the proposed method in this paper.The processing gain of the proposed method compared to the conventional broadband MVDR can be obtained as long as the amplitude fluctuation of the array noise frequency spectrum is severer than that of the target signal.The validity of the method is validated by the optimal signal detection theory.Simulation and real data are used to validate the performance of the method.Analysis results show that about 4 dB processing gain compared to the general broadband MVDR can be reached by the proposed method.展开更多
在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法...在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。展开更多
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
基金Supported by the State Key Program of National Natural Science of China (60534010), the National Basic Research Program of China (973 Program) (2009CB320604), the National Natural Science foundation of China (60674021, 60804024, 60974043), the Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), and Research Fund for the Doctoral Program of Higher Education of China (20060145019)
文摘This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains unaffected by control actions in a closed-loop system.It is composed of controller residual and output residual and some of further results are developed in frequency domain.Besides the ability of detecting actuator and sensor faults,it is able to detect faults/failures resulting from the computer used for control purpose that generates control signals.Currently,all of existing fault detection schemes cannot achieve the same task at all.A practical DC motor example,with a PID controller,is used to demonstrate the effectiveness of the ToMFIR-based fault detection.A comparison with the standard observer-based technique is also provided.
文摘As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.
基金supported by the National Natural Science Foundation of China(61472443)the Basic Research Priorities Program of Shaanxi Province Natural Science Foundation of China(2013JQ8042)
文摘As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
基金Project supported by International Cooperation Project in Shaanxi Province of China(2012KW-01)
文摘It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.
基金Sponsored by New Century Excellent Talent Support Project (NCET-04-0545)
文摘An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the total narrowband energy of all array elements,and the narrowband power is calculated by MVDR.Finally,final spatial energy spectrum can be obtained by averaging or summing all results of every narrowband frequency bin.Any prior-information about the noise or the signal is unnecessary for the proposed method in this paper.The processing gain of the proposed method compared to the conventional broadband MVDR can be obtained as long as the amplitude fluctuation of the array noise frequency spectrum is severer than that of the target signal.The validity of the method is validated by the optimal signal detection theory.Simulation and real data are used to validate the performance of the method.Analysis results show that about 4 dB processing gain compared to the general broadband MVDR can be reached by the proposed method.
文摘在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。