期刊文献+
共找到47,701篇文章
< 1 2 250 >
每页显示 20 50 100
Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers
1
作者 Ning Han Xiaolin Zhao Vijay Kumar Thakur 《Nano Materials Science》 EI CAS CSCD 2023年第1期1-14,共14页
Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE f... Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE fiber is smooth and demonstrates no-polar groups.The weak interfacial adhesion between fiber and resin seri-ously restricts the applications of UHMWPE fiber.Therefore,the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength.The modified method by adding nanomaterials elu-cidates the easy fabrication,advanced equipment and proper technology.Thus,the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed.Meanwhile,the effects of other various methods on surface modification are also reviewed.This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies. 展开更多
关键词 UHMWPE fiber Surface modification Interfacial adhesion strength NANOCOMPOSITES
在线阅读 下载PDF
“Zero‑Strain” NiNb_(2)O_(6) Fibers for All‑Climate Lithium Storage
2
作者 Yan Zhao Qiang Yuan +5 位作者 Liting Yang Guisheng Liang Yifeng Cheng Limin Wu Chunfu Lin Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期348-360,共13页
Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen... Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries. 展开更多
关键词 NiNb_(2)O_(6)porous fiber “Zero-strain”mechanism Electrochemical property Harsh-temperature operation Operando characterization
在线阅读 下载PDF
High-Performance Humidity Sensors Based on Double-Layer ZnO-TiO_(2) Nanofibers via Electrospinning 被引量:1
3
作者 YUE Xue-Jun HONG Tian-Sheng +1 位作者 XU Xing LI Zhen 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第9期69-72,共4页
ZnO and TiO_(2) nanofibers are synthesized via electrospinning methods and characterized by x−ray diffraction,scanning electron microscopy,and transmission electron microscopy.Humidity sensors with double-layer sensin... ZnO and TiO_(2) nanofibers are synthesized via electrospinning methods and characterized by x−ray diffraction,scanning electron microscopy,and transmission electron microscopy.Humidity sensors with double-layer sensing films are fabricated by spinning the ZnO and TiO_(2) nanofibers on ceramic substrates sequentially.Compared with sensors loading only one type of nanofiber,the double-layer sensors exhibit much better sensing properties.The corresponding impedance changes more than four orders of magnitude within the whole humidity range from 11%to 95%relative humidity,and the response and recovery times are about 11 and 7 s,respectively.Maximum hysteresis is around 1.5%RH,and excellent stability is also observed after 180 days.The humidity sensing mechanism is discussed in terms of the sensor structure.The experimental results provide a possible route for the design and fabrication of high performance humidity sensors based on one-dimensional nanomaterials. 展开更多
关键词 materials fibers SPINNING
在线阅读 下载PDF
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength 被引量:1
4
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 Boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
在线阅读 下载PDF
Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors 被引量:4
5
作者 Quanlin Bao Jihuai Wu +5 位作者 Leqing Fan Jinhua Ge Jia Dong Jinbiao Jia Jiali Zeng Jianming Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1252-1259,共8页
A flexible electrode of nickel diselenide/carbon fiber cloth(NiSe/CFC) is fabricated at room temperature by a simple and efficient electrodeposition method. Owing to NiSecharacter of nanostructure and high conductivit... A flexible electrode of nickel diselenide/carbon fiber cloth(NiSe/CFC) is fabricated at room temperature by a simple and efficient electrodeposition method. Owing to NiSecharacter of nanostructure and high conductivity, the as-synthesized electrodes possess perfect pseudocapacitive property with high specific capacitance and excellent rate capability. In three-electrode system, the electrode specific capacitance of the NiSe/CFC electrode varies from 1058 F gto 996.3 F gat 2 A gto 10 A grespectively, which shows great rate capability. Moreover, the NiSeelectrode is assembled with an active carbon(AC) electrode to form an asymmetric supercapacitor with an extended potential window of 1.6 V. The asymmetric supercapacitor possesses an excellent energy density 32.7 Wh kgwith a power density 800 W kgat the current density of 1 A g. The nanosheet array on carbon fiber cloth with high flexibility, specific capacitance and rate capacitance render the NiSeto be regarded as the promising material for the high performance superconductor. 展开更多
关键词 ELECTRODEPOSITION Carbon fiber cloth Flexible NiSe_2 SUPERCAPACITOR
在线阅读 下载PDF
Integrated Co3O4/carbon fiber paper for high-performance anode of dual-ion battery 被引量:4
6
作者 Lu Sui Xiaoyuan Shi +5 位作者 Ting Deng He Yang Hongyan Liu Hong Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期7-12,共6页
In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expa... In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expansion and exfoliation always occur for electrode materials. Herein, an integrated electrode Co3O4/carbon fiber paper (CFP) is prepared as the anode of DIB. As the Co3O4 nanosheets grow on CFP substrate vertically, it promotes the immersion of electrolyte and shortens the pathway for ionic transport. Besides, the strong interaction between Co3O4 and CFP substrate reduces the possibility of sheet exfoliation. An integrated-electrode-based DIB is therefore packaged using Co3O4/CFP as anode and graphite as cathode. As a result, a high energy density of 72 Wh/kg is achieved at a power density of 150 W/kg. The design of integrated electrode provides a new route for the development of high-performance DIBs. 展开更多
关键词 INTEGRATED electrode Dual-ion batteries CO3O4 ANODE Carbon fiber paper
在线阅读 下载PDF
Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management
7
作者 Ziye Chen Zexu Hu +4 位作者 Shining Chen Senlong Yu Liping Zhu Hengxue Xiang Meifang Zhu 《Nano Materials Science》 EI CAS CSCD 2024年第3期337-344,共8页
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ... Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc. 展开更多
关键词 Thermal management Hybrid fibers Polyamides Bicomponent melt spinning Temperature regulating fibers
在线阅读 下载PDF
Seeing at a distance with multicore fibers
8
作者 Haogong Feng Xi Chen +4 位作者 Runze Zhu Yifeng Xiong Ye Chen Yanqing Lu Fei Xu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期39-49,共11页
Images and videos provide a wealth of information for people in production and life.Although most digital information is transmitted via optical fiber,the image acquisition and transmission processes still rely heavil... Images and videos provide a wealth of information for people in production and life.Although most digital information is transmitted via optical fiber,the image acquisition and transmission processes still rely heavily on electronic circuits.The development of all-optical transmission networks and optical computing frameworks has pointed to the direction for the next generation of data transmission and information processing.Here,we propose a high-speed,low-cost,multiplexed parallel and one-piece all-fiber architecture for image acquisition,encoding,and transmission,called the Multicore Fiber Acquisition and Transmission Image System(MFAT).Based on different spatial and modal channels of the multicore fiber,fiber-coupled self-encoding,and digital aperture decoding technology,scenes can be observed directly from up to 1 km away.The expansion of capacity provides the possibility of parallel coded transmission of multimodal high-quality data.MFAT requires no additional signal transmitting and receiving equipment.The all-fiber processing saves the time traditionally spent on signal conversion and image pre-processing(compression,encoding,and modulation).Additionally,it provides an effective solution for 2D information acquisition and transmission tasks in extreme environments such as high temperatures and electromagnetic interference. 展开更多
关键词 long-distance fiber imaging image transmission parallel transmission all-optical encoding multicore fiber
在线阅读 下载PDF
Piezoelectric fibers based on silk fibroin with excellent output performance
9
作者 甄文强 陈杰 +1 位作者 范苏娜 张耀鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期128-135,共8页
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr... The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester. 展开更多
关键词 silk fibroin piezoelectric fiber DRY-SPINNING conformation transition
在线阅读 下载PDF
Flexible coal-derived carbon fibers via electrospinning for self-standing lithium-ion battery anodes
10
作者 Baolin Xing Weibo Meng +7 位作者 Hao Liang Weiwei Kang Huihui Zeng Chuanxiang Zhang Ishioma Laurene Egun Peng Li Yijun Cao Zhengfei Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1753-1763,共11页
A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These... A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These CCFs were utilized as free-standing lithium-ion battery(LIB)anodes.Optimizing car-bonization temperature reveals that the CCFs exhibit a one-dimensional solid linear structure with a uni-form distribution of graphite-like microcrystals.These fibers possess a dense structure and smooth surface,with averaging diameter from approximately 125.0 to 210.0 nm at carbonization temperatures ranging from 600 to 900℃.During electrospinning and carbonization,the aromatic rings enriched in bituminous coal crosslink with PAN chains,forming a robust three-dimensional(3D)framework.This 3D microstructure significantly enhances the flexibility and tensile strength of CCFs,while increasing the graphite-like sp^(2)microcrystalline carbon content,thus improving electrical conductivity.The CCFs carbonized at 700℃demonstrate an optimal balance of sp^(3)amorphous and sp^(2)graphite-like carbons.The average diameter of CCFs-700 is 177 nm and the specific surface area(SSA)is 7.2 m^(2)g^(-1).Additionally,the fibers contain oxygen-containing functional groups,as well as nitrogen-containing func-tional groups,including pyridinic nitrogen and pyrrolic nitrogen.Owing to its characteristics,the CCFs-700 showcases remarkable electrochemical performance,delivering a high reversible capacity of 631.4 mAh g^(-1).CCFs-700 also exhibit outstanding cycle stability,which retains approximately all of their first capacity(400.1 mAh g^(-1))after 120 cycles.This research offers an economical yet scalable approach for producing flexible and self-supporting anodes for LIBs that do not require current collectors,binders and conductive additives,thereby simplifying the electrode fabrication process. 展开更多
关键词 Lithium-ion batteries Coal-derived carbon fibers ELECTROSPINNING Flexible anode Electrochemical performance
在线阅读 下载PDF
Paving continuous heat dissipation pathways for quantum dots in polymer with orangeinspired radially aligned UHMWPE fibers
11
作者 Xuan Yang Xinfeng Zhang +3 位作者 Tianxu Zhang Linyi Xiang Bin Xie Xiaobing Luo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fil... Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications. 展开更多
关键词 quantum dots UHMWPE fibers radial alignment heat dissipation light-emitting devices
在线阅读 下载PDF
High-Performance Fiber Compound Material to be Industrialized 被引量:1
12
作者 James H.Zhao 《China Textile》 2008年第1期22-26,共5页
Chinese top planner-State Development and Reform Commission,has decided to organize and coordinate an implementation of a special project for high tech industrialization of fiber-reinforced compound materials in 2008 ... Chinese top planner-State Development and Reform Commission,has decided to organize and coordinate an implementation of a special project for high tech industrialization of fiber-reinforced compound materials in 2008 up to 2009.The decision has recently been issued in its national circular(doc. 3177,Yr.2007)to call for local enterprises to apply for this special project support. 展开更多
关键词 HIGH high-performance fiber Compound Material to be Industrialized
在线阅读 下载PDF
Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
13
作者 Junbao Kang Nanping Deng +1 位作者 Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期26-42,共17页
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed... Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs. 展开更多
关键词 Composite solide lectrolytes Polymer fibers Solid-state lithium metal batteries Solid-stateel ectrolytes Nanofiber membranes
在线阅读 下载PDF
Thermal stress simulation analysis of aerospace optical fibers and connectors and related extensions to high-speed railway area
14
作者 Feng Zhou Siyuan Yu +3 位作者 Zeren Gao Jie Kan Hao Xu Mengjie Liu 《High-Speed Railway》 2024年第2期122-132,共11页
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca... Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways. 展开更多
关键词 Aerospace optical fiber Aerospace optic connector Simulation analysis
在线阅读 下载PDF
Revolutionize fashion with waterless technology for wood-based cellulosic fibers
15
《China Textile》 2024年第3期50-51,共2页
From producing fibers made from wood to becoming a global technology leader:take an inspiring journey in time through 80 years of innovation history.The journey began in 1890,when Emil Hamburger,a paper industrialist ... From producing fibers made from wood to becoming a global technology leader:take an inspiring journey in time through 80 years of innovation history.The journey began in 1890,when Emil Hamburger,a paper industrialist from Lower Austria,acquired the"Starlingermühle"in Lenzing(Austria).Today,the Lenzing Group is an internationally established company with nine production sites and nine sales and planning offices in more than 10 countries. 展开更多
关键词 fibers BECOMING TECHNOLOGY
在线阅读 下载PDF
Preserving glacier mass:Cellulosic LENZING^(TM) fibers provide snow and ice protection solution
16
《China Textile》 2024年第1期10-11,共2页
In field trials on Austrian glaciers,nonwovens made of ce u osic LENZING^(TM) fibers are being used to cover glacier mass.They are showing promising results and offer a sustainable solution for glacier protection.Nonw... In field trials on Austrian glaciers,nonwovens made of ce u osic LENZING^(TM) fibers are being used to cover glacier mass.They are showing promising results and offer a sustainable solution for glacier protection.Nonwovens containing fossilbased synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.Geotextiles with ce u osic LENZINGTMfibers won the prestigious Swiss BIO TOP,an award for wood and material innovations.Geotextiles are already widely used to protect snow and ice on glaciers frommelting. 展开更多
关键词 fibers GLACIER NONWOVEN
在线阅读 下载PDF
Tailoring temperature response for a multimode fiber
17
作者 Han Gao Haifeng Hu Qiwen Zhan 《Opto-Electronic Science》 2025年第1期12-24,共13页
This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimental... This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimentally measured multi-tem-perature transmission matrix,a set of temperature principal modes that exhibit resilience to disturbances caused by tem-perature fluctuations can be generated.Reversing this concept also allows the construction of temperature anti-principal modes,with output profiles more susceptible to temperature influences than the unmodulated wavefront.Despite changes in the length of the multimode fiber within the temperature-fluctuating region,the proposed approach remains capable of robustly controlling the temperature response within the fiber.To illustrate the practicality of the proposed spe-cial state,a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensi-tization is proposed.This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy.These novel states are anticipated to have wide-ranging applications in fiber communication,sensing,imaging,and spectroscopy,and serve as a source of inspiration for the discovery of other novel states. 展开更多
关键词 multimode fiber principal mode wavefront shaping optical fiber sensor temperature response
在线阅读 下载PDF
Theoretical Calculations of HfSe_(3) Band Characteristics and Its Applications in Pulse Fiber Lasers
18
作者 Weiwei Feng Ligang Chen 《Chinese Physics Letters》 2025年第2期41-47,共7页
Transition metal trichalcogenides(TMTs)are known for their two-dimensional(2D)characteristics and the presence of quasi one-dimensional chains.These materials are less vulnerable to edge defects,which makes them suita... Transition metal trichalcogenides(TMTs)are known for their two-dimensional(2D)characteristics and the presence of quasi one-dimensional chains.These materials are less vulnerable to edge defects,which makes them suitable for optical and electronic devices with low-dimensional structures.This study demonstrates the application of HfSe_(3) nanomaterial as an emerging ultrafast photonic device capable of producing mode-locked and Q-switched pulses in fiber lasers.The nonlinear optical absorption properties of a HfSe_(3)-based saturable absorber(SA)were analyzed,revealing a modulation depth of 7% and nonsaturable loss of 35%,respectively.In addition,first principles-based theoretical calculations were performed to explore the optoelectronic properties of bulk HfSe_(3).The integration of the HfSe_(3)-based SA into an Er-doped fiber laser cavity enabled both Q-switched and mode-locked pulse operations.For the mode-locked operation,the pulse duration was 560 fs,accompanied by a signal-to-noise ratio(SNR)of 71.43 dB.In the Q-switched regime,the narrowest pulse width recorded was 757.1 ns with an SNR of 75.45 dB.This study indicates that nanodevices based on 2D TMTs hold promise for efficient ultrafast photonic applications and can be extensively employed in nonlinear optical technologies. 展开更多
关键词 SWITCHED fiber ABSORBER
在线阅读 下载PDF
Remote Comparison of Two Sr Optical Lattice Clocks through a 58 km Fiber Link
19
作者 Tang-Yin Liao Hao Liu +9 位作者 Fei Meng Qiang Wang Tao Yang Hao-Chen Tian Bing-Kun Lu Lin Zhu Ye Li Bai-Ke Lin Zhan-Jun Fang Yi-Ge Lin 《Chinese Physics Letters》 2025年第3期63-68,共6页
Two^(87)Sr optical lattice clocks(OLCs)are being developed and operated at the National Institute of Metrology(NIM),located on different campuses that are 40km apart.In order to compare the optical frequencies of thes... Two^(87)Sr optical lattice clocks(OLCs)are being developed and operated at the National Institute of Metrology(NIM),located on different campuses that are 40km apart.In order to compare the optical frequencies of these two Sr OLCs,a 58-km noise canceled fiber link is built to transfer both a 1542-nm transfer laser and a microwave reference from Changping campus to Hepingli campus.Two commercial optical frequency combs(OFCs)with adapted single-branch 698/1542nm outputs coherently unite the two 698-nm clock lasers and the 1542-nm transfer laser.The fractional instability of the comparison yields 3.1×10^(−17)at 10000 s averaging time.The measured fractional frequency difference between these two Sr OLCs was evaluated to be 1.9(3.2)×10^(−17),which is within their claimed uncertainties.This result demonstrates the consistency of their frequencies when they serve as optical frequency standards.Our remote comparison demonstrates the feasibility of optical clock comparison through a long-distance fiber link and contributes to the progress of redefinition of the SI second. 展开更多
关键词 fiber FRACTIONAL LATTICE
在线阅读 下载PDF
Report on 3,143.6-km Time and Frequency Transfer Fiber Link with Ps-level Stability
20
作者 Bo Liu Xinxing Guo +4 位作者 Jiang Chen Yanli Zhou Tao Liu Ruifang Dong Shougang Zhang 《Chinese Physics Letters》 2025年第1期68-72,共5页
This letter describes the implementation of a high-precision time and frequency transmission system using a two-way and wavelength division multiplexing scheme over 3,143.6 km of field fiber links,connecting 21 sites ... This letter describes the implementation of a high-precision time and frequency transmission system using a two-way and wavelength division multiplexing scheme over 3,143.6 km of field fiber links,connecting 21 sites between Xi’an and Beijing,China.This scheme incorporates a link noise clean-up system(LNCUS),wherein a controlled very-low-phase noise BVA oscillator acts as an internal frequency source at the relay site to effectively suppress the interference caused by the fiber link noise.Additionally,the high-stability pulse generation technology in the LNCPS provides sufficient short-term stability to significantly improve the stability of the fiber time transfer.The results indicate a time transfer stability in terms of time deviation(TDEV)of less than2.07 ps@1s,5.9 ps@100,000s,and combined uncertainty of less than 49.29 ps for the 3,143.6 km field fiber link.The results represent a significant breakthrough in achieving high-accuracy time transfer and continuous operation over ultralong-span field optical fibers exceeding 3,000 km for the first time.This enabled time transfer and synchronization services over the longest international optical fiber distance,thereby establishing a fundamental basis for constructing a nationwide high-precision time service through optical fiber networks. 展开更多
关键词 fiber BREAKTHROUGH EXCEEDING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部