On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epita...One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epitaxy(HVPE)and doped with Fe. The anisotropy of Rayleigh propagation and the electromechanical coupling coefficient in Fe-doped GaN are investigated. The difference in resonance frequency between the SAWs between [1120] GaN and [1100] GaN is about 0.25% for the Rayleigh propagation mode, which is smaller than that of non-intentionally doped GaN film(~1%)reported in the literature. The electromechanical coupling coefficient of Fe-doped GaN is about 3.03%, which is higher than that of non-intentionally doped GaN film. The one-port SAWR fabricated on an 8-μm Fe-doped GaN/sapphire substrate has a quality factor of 2050, and that fabricated on Fe-doped bulk GaN has a quality factor as high as 3650. All of our results indicate that high-quality bulk GaN is a very promising material for application in SAW devices.展开更多
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-die...The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.展开更多
In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their ...In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.展开更多
A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain ...A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.展开更多
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, th...We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.展开更多
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical r...To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.展开更多
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to wi...An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various ...Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.展开更多
In this paper, we show theoretically and experimentally that the large-area planar plasma with high density and good uniformity can be sustained by a surface microwave when the electron density is over-dense. From the...In this paper, we show theoretically and experimentally that the large-area planar plasma with high density and good uniformity can be sustained by a surface microwave when the electron density is over-dense. From the experimental results we find that the nonuniformities in azimuthal plasma density and electron temperature have been greatly improved and in particular the nonuniformity is less than 10% when the gas pressure is 30 Pa. By improving the antenna shape, enhancing the microwave power and choosing the appropriate gas pressure, the large area planar plasma with high density can be produced.展开更多
We systematically study the electronic structure of a kagome superconductor CsV_(3)Sb_(5)at different temperatures coveringboth its charge density wave state and normal state with angle-resolved photoemission spectros...We systematically study the electronic structure of a kagome superconductor CsV_(3)Sb_(5)at different temperatures coveringboth its charge density wave state and normal state with angle-resolved photoemission spectroscopy.We observe thatthe V-shaped band aroundГshows three different behaviors,referred to as a/a',βandγ,mainly at different temperatures.Detailed investigations confirm that these bands are all from the same bulk Sb-p_(z)origin,but they are quite sensitiveto the sample surface conditions mainly modulated by temperature.Thus,the intriguing temperature dependent electronicbehavior of the band nearГis affected by the sample surface condition,rather than intrinsic electronic behavior originatingfrom the phase transition.Our result systematically reveals the confusing electronic structure behavior of the energy bandsaroundГ,facilitating further exploration of the novel properties in this material.展开更多
Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerica...Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.展开更多
Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the ...Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa- gation were numerically simulated. The results show that, the properties of plasma with higher density and lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 10^17 m^-3 and the medium radius between 11 mm and 19 mm.展开更多
Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinyl...Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE)) incorporated with zinc oxide(ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF-TrFE)/ZnO nanocomposites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.展开更多
Based on the principle that one-ended electromagnetic surface wave can drive a plasma antenna, the relation between the effective length of an antenna column and the applied radio frequency (RF) power was studied bo...Based on the principle that one-ended electromagnetic surface wave can drive a plasma antenna, the relation between the effective length of an antenna column and the applied radio frequency (RF) power was studied both theoretically and experimentally. The density dis- tribution along the antenna column as well as the electron temperature in different conditions were investigated. The characteristics of the reception of local frequency modulated (FM) electro- magnetic wave by the plasma antenna were compared with that by a copper antenna with same dimensions. The results show that it is feasible to take plasma antennas as receiving ones.展开更多
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and densi...A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.展开更多
The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness deter...The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness determination based on theoretical dispersion curve v( fh) and experimental dispersion curve v( f) is developed. The method provides a series of thickness values at different frequencies f, and the mean value is considered as the final result of the measurement. The thicknesses of six interconnect films are determined by SAWs, and the results are compared with the manufacturer's data.The relative differences are in the range from 0.4% to 2.18%, which indicates that the surface acoustic wave technique is reliable and accurate in the nondestructive thickness determination for films. This method can be generally used for fast and direct determination of film thickness.展开更多
Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transm...Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines.展开更多
A three-dimensional fluid model for surface-wave plasma (SWP), to investigate the discharge characteristics of a rectangular SWP source working in a steady state, was presented. The simulation is performed for diffe...A three-dimensional fluid model for surface-wave plasma (SWP), to investigate the discharge characteristics of a rectangular SWP source working in a steady state, was presented. The simulation is performed for different gas pressures in argon and different deposited powers. The results showed that there is a peak of plasma density at a distance of 2 cm to 3 cm from the plasma-quartz interface whose position depends mainly on the gas pressure but not the deposited power. The spatial distributions of plasma parameters and their dependence on the gas pressure and deposited power are also presented and discussed. Using this model a good agreement between the simulation results and the available experimental data is obtained.展开更多
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0403002)the National Science Fund for Distinguished Young Scholars,China(Grant No.Y3CHC11001)the National Natural Science Foundation of China(Grant No.11604368)
文摘One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epitaxy(HVPE)and doped with Fe. The anisotropy of Rayleigh propagation and the electromechanical coupling coefficient in Fe-doped GaN are investigated. The difference in resonance frequency between the SAWs between [1120] GaN and [1100] GaN is about 0.25% for the Rayleigh propagation mode, which is smaller than that of non-intentionally doped GaN film(~1%)reported in the literature. The electromechanical coupling coefficient of Fe-doped GaN is about 3.03%, which is higher than that of non-intentionally doped GaN film. The one-port SAWR fabricated on an 8-μm Fe-doped GaN/sapphire substrate has a quality factor of 2050, and that fabricated on Fe-doped bulk GaN has a quality factor as high as 3650. All of our results indicate that high-quality bulk GaN is a very promising material for application in SAW devices.
基金supported by the Foundation for Returned Scholars,the Ministry of Education of China
文摘The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.
基金supported financially by National Natural Science Foundation of China(Nos.1117502411375031)+8 种基金Beijing Natural Science Foundation(No.1112012)the National Science & Technology Pillar Program for the 12th Five-year Plan2011BAD24B01Beijing Education Committee Foundation of Science and Technology(Nos.KM2011100015008KM201010015005)BIGC Key Project(No.23190113051)PHR20110516PHR201107145Fujian Provincial Department of Science and Technology Key Project of China(No.2012H0008)
文摘In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.
基金Project supported by the Special Fund of National High-Tech Development and Research Plan (Grant No 2008AA12A214)
文摘A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.
基金Project supported by the National Natural Science Foundation of China(Grant No.11105002)the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,China(Grant No.GZ1215)+1 种基金the Natural Science Foundation for University in Anhui Province of China(Grant No.KJ2013A106)the Doctoral Scientific Research Funds of Anhui University of Science and Technology,China
文摘We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
基金Project supported by the National Natural Science Foundation of China(Grant No.41276187)the Global Change Research Program of China(Grant No.2015CB953901)+3 种基金the Priority Academic Development Program of Jiangsu Higher Education Institutions(PAPD)Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province,Chinathe Canadian Program on Energy Research and Developmentthe Canadian World Class Tanker Safety Service
文摘To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.
文摘An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
文摘Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.
文摘In this paper, we show theoretically and experimentally that the large-area planar plasma with high density and good uniformity can be sustained by a surface microwave when the electron density is over-dense. From the experimental results we find that the nonuniformities in azimuthal plasma density and electron temperature have been greatly improved and in particular the nonuniformity is less than 10% when the gas pressure is 30 Pa. By improving the antenna shape, enhancing the microwave power and choosing the appropriate gas pressure, the large area planar plasma with high density can be produced.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174362 and 92065202)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302803)the New Cornerstone Science Foundation.Part of this research used Beamline 03U of the Shanghai Synchrotron Radiation Facility,which is supported by ME2 project under contract No.11227902 from the National Natural Science Foundation of China.
文摘We systematically study the electronic structure of a kagome superconductor CsV_(3)Sb_(5)at different temperatures coveringboth its charge density wave state and normal state with angle-resolved photoemission spectroscopy.We observe thatthe V-shaped band aroundГshows three different behaviors,referred to as a/a',βandγ,mainly at different temperatures.Detailed investigations confirm that these bands are all from the same bulk Sb-p_(z)origin,but they are quite sensitiveto the sample surface conditions mainly modulated by temperature.Thus,the intriguing temperature dependent electronicbehavior of the band nearГis affected by the sample surface condition,rather than intrinsic electronic behavior originatingfrom the phase transition.Our result systematically reveals the confusing electronic structure behavior of the energy bandsaroundГ,facilitating further exploration of the novel properties in this material.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203211 and 41675154)the Six Major Talent Peak Expert of Jiangsu Province,China(Grant No.2015-XXRJ-014)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141483)
文摘Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.
基金Basic Scientific Research Fund of National Defense and Scientific Research Development Fund of the Engineering & Technical college,Chengdu University of Technology(No.C122007019)
文摘Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa- gation were numerically simulated. The results show that, the properties of plasma with higher density and lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 10^17 m^-3 and the medium radius between 11 mm and 19 mm.
基金the Agence Nationale de la Recherche for the financial support (ANR-12-BS09021)the Department of Biotechnology (DBT), Government of India, New Delhi, for the financial support through MSUB IPLSARE Program (BT/PR4800/INF/22/152/2012)
文摘Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE)) incorporated with zinc oxide(ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF-TrFE)/ZnO nanocomposites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.
基金supported by Basic Science Foundation of National Defence of China
文摘Based on the principle that one-ended electromagnetic surface wave can drive a plasma antenna, the relation between the effective length of an antenna column and the applied radio frequency (RF) power was studied both theoretically and experimentally. The density dis- tribution along the antenna column as well as the electron temperature in different conditions were investigated. The characteristics of the reception of local frequency modulated (FM) electro- magnetic wave by the plasma antenna were compared with that by a copper antenna with same dimensions. The results show that it is feasible to take plasma antennas as receiving ones.
基金the Equipment Foundation of Equipment Ministry of China(No.51421KG0152)
文摘A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.
基金Project supported by the National Natural Science Foundation of China(Grant No.61571319)
文摘The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness determination based on theoretical dispersion curve v( fh) and experimental dispersion curve v( f) is developed. The method provides a series of thickness values at different frequencies f, and the mean value is considered as the final result of the measurement. The thicknesses of six interconnect films are determined by SAWs, and the results are compared with the manufacturer's data.The relative differences are in the range from 0.4% to 2.18%, which indicates that the surface acoustic wave technique is reliable and accurate in the nondestructive thickness determination for films. This method can be generally used for fast and direct determination of film thickness.
基金Project supported by the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No.20100185110022)the National Basic Research Program of China (Grant No. 2007CB310401)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2011J037)
文摘Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines.
文摘A three-dimensional fluid model for surface-wave plasma (SWP), to investigate the discharge characteristics of a rectangular SWP source working in a steady state, was presented. The simulation is performed for different gas pressures in argon and different deposited powers. The results showed that there is a peak of plasma density at a distance of 2 cm to 3 cm from the plasma-quartz interface whose position depends mainly on the gas pressure but not the deposited power. The spatial distributions of plasma parameters and their dependence on the gas pressure and deposited power are also presented and discussed. Using this model a good agreement between the simulation results and the available experimental data is obtained.