A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cab...There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.展开更多
In an injection moulding process, the mould cooling s ystem is very important as an efficient and uniform cooling effect can improve b oth the productivity and part quality. Due to the complexity of the process, muc h...In an injection moulding process, the mould cooling s ystem is very important as an efficient and uniform cooling effect can improve b oth the productivity and part quality. Due to the complexity of the process, muc h research on the mould cooling analysis and cooling design optimization has bee n focused on the core and the cavity, excluding other systems of injection mould s. However, the runner system introduces a considerable amount of heat into the mould. In recent years, more and more hot runner systems are being applied in th e moulding industry to save material and decrease losses of injection pressure. This raises the need to include the hot runner system in the cooling analysis. I n this paper, a photo frame part was studied. The mould was built with a hot run ner system. Two thermal sensors were installed: one measures the temperature of lateral surface of hot runner nozzle; the other measures the plastic temperature from the core side. A pressure sensor was also installed to measure the pressur e of the core impression. Cooling analysis was performed using ABAQUS, ananalysi s software based on the Finite Element Method (FEM). The assembly including core , cavity and plastic part was modeled. Heat conduction from hot runner to cavity and from polymer melt to the mould and force convection on the cooling channel surfaces were studied. The natural convection between the ambient air and the ex terior mould surface was ignored. The simulations were adjusted with the experim ental results to find out the heat input from hot runner and its influence on mo uld cooling. Finally, the optimal cooling design and optimal injection condition were obtained.展开更多
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
基金Project supported by Arm Pre-research Program (51333040101), National Defense 973 Program (6131380301 ), National Natural Science Foundation of China (61040003).
文摘There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.
文摘In an injection moulding process, the mould cooling s ystem is very important as an efficient and uniform cooling effect can improve b oth the productivity and part quality. Due to the complexity of the process, muc h research on the mould cooling analysis and cooling design optimization has bee n focused on the core and the cavity, excluding other systems of injection mould s. However, the runner system introduces a considerable amount of heat into the mould. In recent years, more and more hot runner systems are being applied in th e moulding industry to save material and decrease losses of injection pressure. This raises the need to include the hot runner system in the cooling analysis. I n this paper, a photo frame part was studied. The mould was built with a hot run ner system. Two thermal sensors were installed: one measures the temperature of lateral surface of hot runner nozzle; the other measures the plastic temperature from the core side. A pressure sensor was also installed to measure the pressur e of the core impression. Cooling analysis was performed using ABAQUS, ananalysi s software based on the Finite Element Method (FEM). The assembly including core , cavity and plastic part was modeled. Heat conduction from hot runner to cavity and from polymer melt to the mould and force convection on the cooling channel surfaces were studied. The natural convection between the ambient air and the ex terior mould surface was ignored. The simulations were adjusted with the experim ental results to find out the heat input from hot runner and its influence on mo uld cooling. Finally, the optimal cooling design and optimal injection condition were obtained.