Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperature...Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.展开更多
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ...The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.展开更多
A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and aci...A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and acid treatment revealed that the outer layer of the fiber is composed of nano-polycrystalline diamond.EDS,XPS,XRD and Raman spectrum analysis further identified that the fiber is composed of MWCNTs in the inner part and nano-polycrystalline diamond in the out layer.It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano diamond fiber under high pressure and high temperature.展开更多
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d a...Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d at superhigh pressure and high temperature(HP-HT) are reported in this paper.展开更多
Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sinter...Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sintered samples increased with increasing CBN content and the highest hardness of 32.7 GPa was achieved for the CBN-5 wt%Al specimens sintered at 1 400℃.The reactions between CBN and Al started to occur at about 900℃and the reaction products strongly depended on the Al content,sintering temperature and Co diffused from the substrates according to the x-ray diffraction(XRD) observations.The CBN composite sintered at 1 200℃from a CBN-15 wt%Al mixture showed the best cutting performance.展开更多
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using G...In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.展开更多
随着碳捕集、利用与封存(carbon capture,utilization and storage,CCUS)技术在油田的持续应用,CO_(2)腐蚀井下管柱现象引起高度重视,亟需适用于高CO_(2)分压环境下考虑腐蚀速率随时间变化影响的腐蚀速率模型。通过模拟温度80~120℃、CO...随着碳捕集、利用与封存(carbon capture,utilization and storage,CCUS)技术在油田的持续应用,CO_(2)腐蚀井下管柱现象引起高度重视,亟需适用于高CO_(2)分压环境下考虑腐蚀速率随时间变化影响的腐蚀速率模型。通过模拟温度80~120℃、CO_(2)分压15~30 MPa条件下Q125、3Cr和13Cr管材的腐蚀,建立了这3种管材考虑温度、CO_(2)分压和腐蚀时间影响的腐蚀速率预测模型,并对Q125套管进行了安全服役寿命预测。结果表明:同一CO_(2)分压下,Q125、3Cr管材腐蚀速率随温度增加呈先增后减的趋势,13Cr管材腐蚀速率随温度增加而增大;3种管材腐蚀速率均随CO_(2)分压增加而增大。Q125管材匀速和变速两种腐蚀速率模型均适用,3Cr和13Cr管材适用变速腐蚀模型。Q125套管的抗拉安全服役年限随着CO_(2)分压的增加而逐渐降低,抗拉安全服役年限最短约为12 a。展开更多
基金Projects(41702320,52104125)supported by the National Natural Science Foundation of ChinaProject(ZR2021MD005)+2 种基金supported by the Natural Science Foundation of Shandong Province,ChinaProject(TMduracon2022002)supported by the Engineering Research Center of Marine Environmental Concrete Technology,Ministry of Education,China。
文摘Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.
基金Project(50574061) supported by the National Natural Science Foundation of ChinaProject(IRT0411) supported by the Changjiang Scholars and Innovative Research Team,Ministry of Education
文摘The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.
基金Supported by the National Natural Science Foundation of China(No.50342017)by the Natural Science Foundation of Beijing(No.2042019)
文摘A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and acid treatment revealed that the outer layer of the fiber is composed of nano-polycrystalline diamond.EDS,XPS,XRD and Raman spectrum analysis further identified that the fiber is composed of MWCNTs in the inner part and nano-polycrystalline diamond in the out layer.It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano diamond fiber under high pressure and high temperature.
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.
文摘Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d at superhigh pressure and high temperature(HP-HT) are reported in this paper.
文摘Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sintered samples increased with increasing CBN content and the highest hardness of 32.7 GPa was achieved for the CBN-5 wt%Al specimens sintered at 1 400℃.The reactions between CBN and Al started to occur at about 900℃and the reaction products strongly depended on the Al content,sintering temperature and Co diffused from the substrates according to the x-ray diffraction(XRD) observations.The CBN composite sintered at 1 200℃from a CBN-15 wt%Al mixture showed the best cutting performance.
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Project(2019zzts525)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(U1837207,U1637601)supported by the National Natural Science Foundation of China
文摘In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.