For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for f...For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.展开更多
In a previous companion paper [1], the potential advantages of high resolution radar for improved target detection were introduced. In particular, the concept of shaping both the transmitted waveform and the receiving...In a previous companion paper [1], the potential advantages of high resolution radar for improved target detection were introduced. In particular, the concept of shaping both the transmitted waveform and the receiving processor in accordance to the expected target down-range profile was highlighted and performance predictions were provided. In this paper, we present and evaluate an adaptive scheme devised to on-line estimate the target profile, in order to overcome a limited a-priori knowledge. In addition, we introduce a more general model of target impulse response, based on a statistical description, and we discuss the corresponding processing scheme and detection performance.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (...Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (SPC MAB). The formed two beams point to two different directions to obtain two images of the observed scenario. The receiving antennas are configured as displaced phase center multiple azimuth beams (DPC MAB) to decrease the required pulse repetition frequency (PRF). The de- creased PRF can ensure the high resolution wide swath imaging. Based on the analysis of the character of the return signal, a pro- cessing method named multiple beam multiple channel algorithm (MBMCA) is proposed to separate the aliased sub-beams' echoes. The separated echoes are focused respectively to get the revisit imaging to the observed scenario. The simulation experiments ve- rify the validity and correctness of the proposed imaging mode and processing algorithm.展开更多
Two novel schemes are proposed to synthesize high resolution range profile (HRRP) based on co-located multiple-input multiple-output (MIMO) system in the context of the joint radar and communication system. The differ...Two novel schemes are proposed to synthesize high resolution range profile (HRRP) based on co-located multiple-input multiple-output (MIMO) system in the context of the joint radar and communication system. The difference between two schemes is the pattern of selecting pulses, which depends on the demand for the velocity information. The system, a type of frequency diverse array (FDA), takes full advantage of the phase-coded orthogonal frequency division multiplexing (OFDM) signal. Furthermore, the complete discrete form of the phase-coded OFDM echoes is utilized to derive the HRRP processing. The velocity estimation in the second scheme aims to eliminate velocity ambiguity, and high velocity can be retrieved exactly. Meanwhile, the imaging method is investigated with random frequency coding applied to an array. The desired performance of resolving velocity ambiguity and suppressing noise is shown by means of comparisons with previous work. The advantages in the radar imaging and the significance of the work are concluded in the end.展开更多
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti...There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
针对正交频分线性调频(OFD-LFM)信号MIMO高分辨雷达稀疏成像问题展开研究,在分析了OFD-LFM信号频谱合成原理以及MIMO高分辨雷达一次快拍成像原理的基础上,给出了一种基于频域稀疏OFD-LFM信号和空域稀疏MIMO雷达天线阵列的联合稀疏模型,...针对正交频分线性调频(OFD-LFM)信号MIMO高分辨雷达稀疏成像问题展开研究,在分析了OFD-LFM信号频谱合成原理以及MIMO高分辨雷达一次快拍成像原理的基础上,给出了一种基于频域稀疏OFD-LFM信号和空域稀疏MIMO雷达天线阵列的联合稀疏模型,并结合压缩感知理论,提出了目标高分辨距离像(high-resolution range profile,HRRP)合成方法以及目标二维成像方法。该方法能够在大幅减少OFD-LFM信号子载波个数、大幅减少MIMO高分辨雷达天线阵元个数的条件下,利用一次快拍重构出高质量的目标HRRP和二维像,不仅避免了目标机动带来的运动补偿难题,同时还有利于天线阵列的工程实现。仿真结果表明所提方法是有效的,且具有一定的抗噪性。展开更多
文摘For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.
文摘In a previous companion paper [1], the potential advantages of high resolution radar for improved target detection were introduced. In particular, the concept of shaping both the transmitted waveform and the receiving processor in accordance to the expected target down-range profile was highlighted and performance predictions were provided. In this paper, we present and evaluate an adaptive scheme devised to on-line estimate the target profile, in order to overcome a limited a-priori knowledge. In addition, we introduce a more general model of target impulse response, based on a statistical description, and we discuss the corresponding processing scheme and detection performance.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金supported by the National Natural Science Foundation of China(61271287)
文摘Based on the squint mode, a high resolution wide swath revisit synthetic aperture radar (SAR) imaging mode is pro- posed. The transmitting antennas are configured as the single phase center multiple azimuth beams (SPC MAB). The formed two beams point to two different directions to obtain two images of the observed scenario. The receiving antennas are configured as displaced phase center multiple azimuth beams (DPC MAB) to decrease the required pulse repetition frequency (PRF). The de- creased PRF can ensure the high resolution wide swath imaging. Based on the analysis of the character of the return signal, a pro- cessing method named multiple beam multiple channel algorithm (MBMCA) is proposed to separate the aliased sub-beams' echoes. The separated echoes are focused respectively to get the revisit imaging to the observed scenario. The simulation experiments ve- rify the validity and correctness of the proposed imaging mode and processing algorithm.
基金supported by the National Natural Science Foundation of China(6107116361071164+8 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic&Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ15-03)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0281)the Fundamental Research Funds for the Central Universitiespartly funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA)
文摘Two novel schemes are proposed to synthesize high resolution range profile (HRRP) based on co-located multiple-input multiple-output (MIMO) system in the context of the joint radar and communication system. The difference between two schemes is the pattern of selecting pulses, which depends on the demand for the velocity information. The system, a type of frequency diverse array (FDA), takes full advantage of the phase-coded orthogonal frequency division multiplexing (OFDM) signal. Furthermore, the complete discrete form of the phase-coded OFDM echoes is utilized to derive the HRRP processing. The velocity estimation in the second scheme aims to eliminate velocity ambiguity, and high velocity can be retrieved exactly. Meanwhile, the imaging method is investigated with random frequency coding applied to an array. The desired performance of resolving velocity ambiguity and suppressing noise is shown by means of comparisons with previous work. The advantages in the radar imaging and the significance of the work are concluded in the end.
基金supported by the Municipal Gavemment of Quzhou(2022D0009,2022D013,2022D033)the Science and Technology Project of Sichuan Province(2023YFG0176)。
文摘There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
文摘针对正交频分线性调频(OFD-LFM)信号MIMO高分辨雷达稀疏成像问题展开研究,在分析了OFD-LFM信号频谱合成原理以及MIMO高分辨雷达一次快拍成像原理的基础上,给出了一种基于频域稀疏OFD-LFM信号和空域稀疏MIMO雷达天线阵列的联合稀疏模型,并结合压缩感知理论,提出了目标高分辨距离像(high-resolution range profile,HRRP)合成方法以及目标二维成像方法。该方法能够在大幅减少OFD-LFM信号子载波个数、大幅减少MIMO高分辨雷达天线阵元个数的条件下,利用一次快拍重构出高质量的目标HRRP和二维像,不仅避免了目标机动带来的运动补偿难题,同时还有利于天线阵列的工程实现。仿真结果表明所提方法是有效的,且具有一定的抗噪性。