A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node...为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。展开更多
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
文摘为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。