Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for impr...Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.展开更多
In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the...In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.展开更多
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of ...The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.展开更多
文摘Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.
基金supported by the National Science Foundation of China under Grant Nos.71361015,71340010,71371074the Jiangxi Provincial Natural Science Foundation under Grant No.20142BAB201013+2 种基金China Postdoctoral Science Foundation under Grant No.2013M540534China Postdoctoral Fund special Project under Grant No.2014T70615Jiangxi Postdoctoral Science Foundation under Grant No.2013KY53
文摘In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.
基金Project(71173061)supported by the National Natural Science Foundation of ChinaProject(2013U-6)supported by Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University),China
文摘The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.