Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full networ...Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks.展开更多
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,...Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.展开更多
在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图...在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图像渐进传输和视觉显著性检测,在复杂多变、带宽严重受限的水声信道中获得可用性较好的水下彩色图像。该方法根据信噪比动态调整数据传输方案,并使用红色通道补偿来提高频域中显著性检测的准确性。然后使用SPIHT渐进传输图像,并在接收端通过导向滤波解决高降采样率引起的块效应,以获得高质量的水下图像。实验结果表明,所提出的方法在压缩水下彩色图像方面具有一定的适用性。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12271394 and 12071336)the Key Research and Development Program of Shanxi Province(Grant No.202102010101004)。
文摘Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks.
文摘Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.
文摘在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图像渐进传输和视觉显著性检测,在复杂多变、带宽严重受限的水声信道中获得可用性较好的水下彩色图像。该方法根据信噪比动态调整数据传输方案,并使用红色通道补偿来提高频域中显著性检测的准确性。然后使用SPIHT渐进传输图像,并在接收端通过导向滤波解决高降采样率引起的块效应,以获得高质量的水下图像。实验结果表明,所提出的方法在压缩水下彩色图像方面具有一定的适用性。