Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for dis...Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.展开更多
Dynamic spectrum access policy is crucial in improving the performance of over- lay cognitive radio networks. Most of the previ- ous works on spectrum sensing and dynamic spe- ctrum access consider the sensing effecti...Dynamic spectrum access policy is crucial in improving the performance of over- lay cognitive radio networks. Most of the previ- ous works on spectrum sensing and dynamic spe- ctrum access consider the sensing effective- ness and spectrum utilization as the design cri- teria, while ignoring the energy related issues and QoS constraints. In this article, we propose a QoS provisioning energy saving dynamic acc- ess policy using stochastic control theory con- sidering the time-varying characteristics of wir- eless channels because of fading and mobility. The proposed scheme determines the sensing action and selects the optimal spectrum using the corresponding power setting in each decis- ion epoch according to the channel state with the objective being to minimise both the flame error rate and energy consumption. We use the Hidden Markov Model (HMM) to model a wir- eless channel, since the channel state is not dir- ectly observable at the receiver, but is instead embedded in the received signal. The proced- ure of dynamic spectrum access is formulated as a Markov decision process which can be sol- ved using linear programming and the primal- dual index heuristic algorithm, and the obta- ined policy has an index-ability property that can be easily implemented in real systems. Sim- ulation results are presented to show the per- formance improvement caused by the propo- sed approach.展开更多
In this paper,we present a comparison of Khasi speech representations with four different spectral features and novel extension towards the development of Khasi speech corpora.These four features include linear predic...In this paper,we present a comparison of Khasi speech representations with four different spectral features and novel extension towards the development of Khasi speech corpora.These four features include linear predictive coding(LPC),linear prediction cepstrum coefficient(LPCC),perceptual linear prediction(PLP),and Mel frequency cepstral coefficient(MFCC).The 10-hour speech data were used for training and 3-hour data for testing.For each spectral feature,different hidden Markov model(HMM)based recognizers with variations in HMM states and different Gaussian mixture models(GMMs)were built.The performance was evaluated by using the word error rate(WER).The experimental results show that MFCC provides a better representation for Khasi speech compared with the other three spectral features.展开更多
文摘Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.
基金supported by the National Natural Science Foundation of China under Grant No.61101107the Beijing Higher Education Young Elite Teacher Project under Grant No.YETP0439
文摘Dynamic spectrum access policy is crucial in improving the performance of over- lay cognitive radio networks. Most of the previ- ous works on spectrum sensing and dynamic spe- ctrum access consider the sensing effective- ness and spectrum utilization as the design cri- teria, while ignoring the energy related issues and QoS constraints. In this article, we propose a QoS provisioning energy saving dynamic acc- ess policy using stochastic control theory con- sidering the time-varying characteristics of wir- eless channels because of fading and mobility. The proposed scheme determines the sensing action and selects the optimal spectrum using the corresponding power setting in each decis- ion epoch according to the channel state with the objective being to minimise both the flame error rate and energy consumption. We use the Hidden Markov Model (HMM) to model a wir- eless channel, since the channel state is not dir- ectly observable at the receiver, but is instead embedded in the received signal. The proced- ure of dynamic spectrum access is formulated as a Markov decision process which can be sol- ved using linear programming and the primal- dual index heuristic algorithm, and the obta- ined policy has an index-ability property that can be easily implemented in real systems. Sim- ulation results are presented to show the per- formance improvement caused by the propo- sed approach.
基金supported by the Visvesvaraya Ph.D.Scheme for Electronics and IT students launched by the Ministry of Electronics and Information Technology(MeiTY),Government of India under Grant No.PhD-MLA/4(95)/2015-2016.
文摘In this paper,we present a comparison of Khasi speech representations with four different spectral features and novel extension towards the development of Khasi speech corpora.These four features include linear predictive coding(LPC),linear prediction cepstrum coefficient(LPCC),perceptual linear prediction(PLP),and Mel frequency cepstral coefficient(MFCC).The 10-hour speech data were used for training and 3-hour data for testing.For each spectral feature,different hidden Markov model(HMM)based recognizers with variations in HMM states and different Gaussian mixture models(GMMs)were built.The performance was evaluated by using the word error rate(WER).The experimental results show that MFCC provides a better representation for Khasi speech compared with the other three spectral features.