期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Distribution and treatment of harmful gas from heavy oil production in the Liaohe Oilfield, Northeast China 被引量:6
1
作者 Zhu Guangyou Zhang Shuichang +5 位作者 Liu Qicheng Zhang Jingyan YangJunyin Wu Tuo Huang Yi Meng Shucui 《Petroleum Science》 SCIE CAS CSCD 2010年第3期422-427,共6页
The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oi... The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion. 展开更多
关键词 Toxic gas H2S heavy oil production TSR Liaohe Oilfield
在线阅读 下载PDF
FCC Study of Canadian Heavy Gas Oils—Comparisons of Product Yields and Qualities between Reactors 被引量:3
2
作者 SiauwH.Ng AdrianHumphries +2 位作者 CraigFairbridge ZhuYuxia SokYui 《Petroleum Science》 SCIE CAS CSCD 2005年第1期1-8,共8页
Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel ca... Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability. VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE) unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion, correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottoms-cracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed. 展开更多
关键词 Fluid catalytic cracking (FCC) vacuum gas oil (VGO) heavy gas oil (HGO)
在线阅读 下载PDF
FCC coprocessing oil sands heavy gas oil and canola oil. 2. Gasoline hydrocarbon type analysis 被引量:1
3
作者 Siauw H.Ng Nicole E.Heshka +4 位作者 Cecile Lay Edward Little Ying Zheng Qiang Wei Fuchen Ding 《Green Energy & Environment》 SCIE 2018年第3期286-301,共16页
This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoli... This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed. 展开更多
关键词 Oil sands heavy gas oil(HGO) Canola oil Advanced Cracking Evaluation(ACE) unit PIONA analysis
在线阅读 下载PDF
A method of monitoring gas saturation in carbon dioxide injection heavy oil reservoirs by pulsed neutron logging technology 被引量:1
4
作者 FAN Jilin ZHANG Feng +5 位作者 TIAN Lili LIANG Qixuan ZHANG Xiaoyang FANG Qunwei LU Baoping LI Xianghui 《Petroleum Exploration and Development》 CSCD 2021年第6期1420-1429,共10页
A method is proposed to characterize the fast neutron scattering cross-section ( s f) quantitatively by the combina-tion of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation ... A method is proposed to characterize the fast neutron scattering cross-section ( s f) quantitatively by the combina-tion of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation of CO_(2)-injected heavy oilreservoirs based on the three-de tector pulsed neutron logging technology. Factors influencing of the evaluation effect of thismethod are analyzed and the effectiveness of this method is verified by a simulation example. By using the Monte Carlo simu-lation method and the physical model of bulk-volume rock, the relationship between s f and CO_(2) saturation is studied, and thesaturation interpretation model is established. The influences of formation temperature and pressure, heavy oil density, bore-hole fluid and reservoir methane content on the evaluation results of CO_(2) saturation are analyzed. The results show that thecharacterization of s f by the combination of secondary gamma information can eliminate the influence of formation lithology,borehole fluid and methane content are the main factors affecting the quantitative monitoring of CO_(2) saturation, and the ef-fects of formation temperature and pressure and heavy oil density are negligible. The simulation example verified the feasibilityof the method for evaluating the CO_(2) saturation of CO_(2)-injected heavy oil reservoirs. 展开更多
关键词 CO_(2)flooding gas saturation heavy oil re servoir pulsed neutron logging fast neutron scattering cross-section secondary gamma-ray Monte Carlo simulation
在线阅读 下载PDF
Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy 被引量:3
5
作者 Kai RONG Zhenzhen WANG +4 位作者 Ruomu HU Renwei LIU Yoshihiro DEGUCH Junjie YAN Jiping LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第7期75-82,共8页
Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power pla... Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS. 展开更多
关键词 laser-induced breakdown spectroscopy flue gas trace heavy metal quantitative analysis
在线阅读 下载PDF
Distribution of Heavy Hydrocarbon in Coal Seams and Its Use in Predicting Outburst of Coal 被引量:3
6
作者 蒋承林 李增华 韩颖 《Journal of China University of Mining and Technology》 2003年第1期29-34,共6页
In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples... In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst. 展开更多
关键词 coal and gas outburst heavy hydrocarbon PREDICTION
在线阅读 下载PDF
Diffusion coefficients of natural gas in foamy oil systems under high pressures 被引量:1
7
作者 Yan-Yu Zhang Xiao-Fei Sun +1 位作者 Xue-Wei Duan Xing-Min Li 《Petroleum Science》 SCIE CAS CSCD 2015年第2期293-303,共11页
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ... The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively. 展开更多
关键词 Foamy oil Diffusion coefficient - heavy oil gas injection High pressure
在线阅读 下载PDF
A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants 被引量:1
8
作者 Hiroshi Watanabe Wim van Dam +1 位作者 Gary Parsons Peter Kleijwegt 《润滑油》 CAS 2011年第4期12-19,共8页
Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,f... Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests. 展开更多
关键词 DIESEL fuel economy friction modifier VISCOSITY friction coefficient heavy duty diesel engine greenhouse gas(GHG) lubricant additive
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部