By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless...By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless numbers, namely quasi-Peclet numbers Pe 1, Pe 2 and Biot number Bi composed of angular velocity ω , thermophysical parameter, and geometry size are proposed, and applied to the dimensionless equations. Simulation result shows that it plays a decisive role in the process of the heat transfer. However, more important is that the numerical simulation depicts the difference between microcosmic and macroscopic structures of the temperature distribution, and reveals the influence of the relative relation of the dimensionless criterion numbers upon heat transfer characteristics.展开更多
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters i...In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.展开更多
The cascade model was tested using transient liquid crystal temperature measurement technology.The effects of main flow Reynolds number,blowing ratio and tip clearance height on the convective heat transfer coefficien...The cascade model was tested using transient liquid crystal temperature measurement technology.The effects of main flow Reynolds number,blowing ratio and tip clearance height on the convective heat transfer coefficient of the turbine outer ring were studied.Two feature lines were marked on the turbine outer ring corresponding to the position of the blade.The conclusions are as follows:The tip clearance leakage flow has a great influence on the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the blowing ratio are kept constant,gradually increasing the main flow Reynolds number will result in an increase in the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the main flow Reynolds number are kept constant and the blowing ratio is gradually increased,the convective heat transfer coefficient of the turbine outer ring is almost constant.The heat transfer coefficient of the turbine outer ring surface is little affected by the blowing ratio;The clearance height has great influence on the heat transfer characteristics of the turbine outer ring.Under the typical working condition in this paper,when the tip clearance height ratio is 1.6%,the convective heat transfer coefficient of the outer surface of the turbine is the highest.展开更多
文摘By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless numbers, namely quasi-Peclet numbers Pe 1, Pe 2 and Biot number Bi composed of angular velocity ω , thermophysical parameter, and geometry size are proposed, and applied to the dimensionless equations. Simulation result shows that it plays a decisive role in the process of the heat transfer. However, more important is that the numerical simulation depicts the difference between microcosmic and macroscopic structures of the temperature distribution, and reveals the influence of the relative relation of the dimensionless criterion numbers upon heat transfer characteristics.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)Funding of Jiangsu Innovation Program for Graduate Education(CXLX12.0170)the Fundamental Research Funds for the Central Universities of China
文摘In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.
文摘The cascade model was tested using transient liquid crystal temperature measurement technology.The effects of main flow Reynolds number,blowing ratio and tip clearance height on the convective heat transfer coefficient of the turbine outer ring were studied.Two feature lines were marked on the turbine outer ring corresponding to the position of the blade.The conclusions are as follows:The tip clearance leakage flow has a great influence on the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the blowing ratio are kept constant,gradually increasing the main flow Reynolds number will result in an increase in the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the main flow Reynolds number are kept constant and the blowing ratio is gradually increased,the convective heat transfer coefficient of the turbine outer ring is almost constant.The heat transfer coefficient of the turbine outer ring surface is little affected by the blowing ratio;The clearance height has great influence on the heat transfer characteristics of the turbine outer ring.Under the typical working condition in this paper,when the tip clearance height ratio is 1.6%,the convective heat transfer coefficient of the outer surface of the turbine is the highest.